当前位置: 首页 > news >正文

网站做百度推广建设企业和建筑企业

网站做百度推广,建设企业和建筑企业,外贸网站怎么做才好,.net最新网站开发文章目录 CIFAR10数据集介绍1. 数据的下载2.修改模型与前面的参数设置保持一致3. 新建模型4. 从数据集中分批量读取数据5. 定义损失函数6. 定义优化器7. 开始训练8.测试模型 9. 手写体图片的可视化10. 多幅图片的可视化 思考题11. 读取测试集的图片预测值#xff08;神经网络的… 文章目录 CIFAR10数据集介绍1. 数据的下载2.修改模型与前面的参数设置保持一致3. 新建模型4. 从数据集中分批量读取数据5. 定义损失函数6. 定义优化器7. 开始训练8.测试模型 9. 手写体图片的可视化10. 多幅图片的可视化 思考题11. 读取测试集的图片预测值神经网络的输出为1012. 采用pandas可视化数据13. 对预测错误的样本点进行可视化14. 看看错误样本被预测为哪些数据 15.输出错误的模型类别 CIFAR10数据集介绍 CIFAR-10 数据集由10个类别的60000张32x32彩色图像组成每类6000张图像。有50000张训练图像和10000张测试图像。数据集分为五个训练批次 和一个测试批次每个批次有10000张图像。测试批次包含从每个类别中随机选择的1000张图像。训练批次包含随机顺序的剩余图像但一些训练批次 可能包含比另一个类别更多的图像。在它们之间训练批次包含来自每个类的5000张图像。以下是数据集中的类以及每个类中的10张随机图像 因为CIFAR10数据集颜色通道有3个所以卷积层L1的输入通道数量in_channels需要设为3。全连接层fc1的输入维度设为400这与上例设为256有所不同原因是初始输入数据的形状不一样经过卷积池化后输出的数据形状是不一样的。如果是采用动态图开发模型那么有一种便捷的方式查看中间结果的形状即在forward()方法中用print函数把中间结果的形状打印出来。根据中间结果的形状决定接下来各网络层的参数。 1. 数据的下载 import torch import torchvision.transforms as transforms from torchvision.datasets import CIFAR10 train_dataset CIFAR10(root./data/CIFAR10,trainTrue,transformtransforms.ToTensor(),downloadTrue) test_dataset CIFAR10(root./data/CIFAR10, trainFalse,transformtransforms.ToTensor())Files already downloaded and verifiedtrain_dataset[0][0].shapetorch.Size([3, 32, 32])train_dataset[0][1]62.修改模型与前面的参数设置保持一致 from torch import nnclass Lenet5(nn.Module):def __init__(self):super(Lenet5,self).__init__()#1 32-5/(1)28self.featuresnn.Sequential(#定义第一个卷积层nn.Conv2d(in_channels3,out_channels6,kernel_size(5,5),stride1),nn.ReLU(),nn.AvgPool2d(kernel_size2,stride2),#定义第二个卷积层nn.Conv2d(in_channels6,out_channels16,kernel_size(5,5),stride1),nn.ReLU(),nn.MaxPool2d(kernel_size2,stride2),)#定义全连接层self.classfiernn.Sequential(nn.Linear(in_features400,out_features120),nn.ReLU(),nn.Linear(in_features120,out_features84),nn.ReLU(),nn.Linear(in_features84,out_features10), )def forward(self,x):xself.features(x)xtorch.flatten(x,1)resultself.classfier(x)return result 3. 新建模型 modelLenet5() devicetorch.device(cuda:0 if torch.cuda.is_available() else cpu) modelmodel.to(device)4. 从数据集中分批量读取数据 #加载数据集 batch_size32 train_loader torch.utils.data.DataLoader(train_dataset, batch_size, shuffleTrue) test_loader torch.utils.data.DataLoader(test_dataset, batch_size, shuffleFalse) # 类别信息也是需要我们给定的 classes (plane, car, bird, cat,deer, dog, frog, horse, ship, truck)5. 定义损失函数 from torch import optimloss_funnn.CrossEntropyLoss() loss_lst[]6. 定义优化器 optimizeroptim.SGD(paramsmodel.parameters(),lr0.001,momentum0.9)7. 开始训练 import time start_timetime.time() #训练的迭代次数 for epoch in range(10):loss_i0for i,(batch_data,batch_label) in enumerate(train_loader):#清空优化器的梯度optimizer.zero_grad()#模型前向预测predmodel(batch_data)lossloss_fun(pred,batch_label)loss_ilossloss.backward()optimizer.step()if (i1)%2000:print(第%d次训练第%d批次损失为%.2f%(epoch,i,loss_i/200))loss_i0 end_timetime.time() print(共训练了%d 秒%(end_time-start_time))第0次训练第199批次损失为2.30 第0次训练第399批次损失为2.30 第0次训练第599批次损失为2.30 第0次训练第799批次损失为2.30 第0次训练第999批次损失为2.30 第0次训练第1199批次损失为2.30 第0次训练第1399批次损失为2.30 第1次训练第199批次损失为2.30 第1次训练第399批次损失为2.30 第1次训练第599批次损失为2.30 第1次训练第799批次损失为2.30 第1次训练第999批次损失为2.29 第1次训练第1199批次损失为2.27 第1次训练第1399批次损失为2.18 第2次训练第199批次损失为2.07 第2次训练第399批次损失为2.04 第2次训练第599批次损失为2.03 第2次训练第799批次损失为2.00 第2次训练第999批次损失为1.98 第2次训练第1199批次损失为1.96 第2次训练第1399批次损失为1.95 第3次训练第199批次损失为1.89 第3次训练第399批次损失为1.86 第3次训练第599批次损失为1.84 第3次训练第799批次损失为1.80 第3次训练第999批次损失为1.75 第3次训练第1199批次损失为1.71 第3次训练第1399批次损失为1.71 第4次训练第199批次损失为1.66 第4次训练第399批次损失为1.65 第4次训练第599批次损失为1.63 第4次训练第799批次损失为1.61 第4次训练第999批次损失为1.62 第4次训练第1199批次损失为1.60 第4次训练第1399批次损失为1.59 第5次训练第199批次损失为1.56 第5次训练第399批次损失为1.56 第5次训练第599批次损失为1.54 第5次训练第799批次损失为1.55 第5次训练第999批次损失为1.52 第5次训练第1199批次损失为1.52 第5次训练第1399批次损失为1.49 第6次训练第199批次损失为1.50 第6次训练第399批次损失为1.47 第6次训练第599批次损失为1.46 第6次训练第799批次损失为1.47 第6次训练第999批次损失为1.46 第6次训练第1199批次损失为1.43 第6次训练第1399批次损失为1.45 第7次训练第199批次损失为1.42 第7次训练第399批次损失为1.42 第7次训练第599批次损失为1.39 第7次训练第799批次损失为1.39 第7次训练第999批次损失为1.40 第7次训练第1199批次损失为1.40 第7次训练第1399批次损失为1.40 第8次训练第199批次损失为1.36 第8次训练第399批次损失为1.37 第8次训练第599批次损失为1.38 第8次训练第799批次损失为1.37 第8次训练第999批次损失为1.34 第8次训练第1199批次损失为1.37 第8次训练第1399批次损失为1.35 第9次训练第199批次损失为1.31 第9次训练第399批次损失为1.31 第9次训练第599批次损失为1.31 第9次训练第799批次损失为1.31 第9次训练第999批次损失为1.34 第9次训练第1199批次损失为1.32 第9次训练第1399批次损失为1.31 共训练了156 秒8.测试模型 len(test_dataset)10000correct0 for batch_data,batch_label in test_loader:pred_testmodel(batch_data)pred_resulttorch.max(pred_test.data,1)[1]correct(pred_resultbatch_label).sum() print(准确率为:%.2f%%%(correct/len(test_dataset)))准确率为:0.53%9. 手写体图片的可视化 from torchvision import transforms as Timport torchlen(train_dataset)50000train_dataset[0][0].shapetorch.Size([3, 32, 32])import matplotlib.pyplot as plt plt.imshow(train_dataset[0][0][0],cmapgray) plt.axis(off)(-0.5, 31.5, 31.5, -0.5)plt.imshow(train_dataset[0][0][0]) plt.axis(off)(-0.5, 31.5, 31.5, -0.5)10. 多幅图片的可视化 from matplotlib import pyplot as plt plt.figure(figsize(20,15)) cols10 rows10 for i in range(0,rows):for j in range(0,cols):idxji*colsplt.subplot(rows,cols,idx1) plt.imshow(train_dataset[idx][0][0])plt.axis(off)import numpy as np img10 np.stack(list(train_dataset[i][0][0] for i in range(10)), axis1).reshape(32,320) plt.imshow(img10) plt.axis(off)(-0.5, 319.5, 31.5, -0.5)img100 np.stack( tuple( np.stack(tuple( train_dataset[j*10i][0][0] for i in range(10) ), axis1).reshape(32,320) for j in range(10)),axis0).reshape(320,320) plt.imshow(img100) plt.axis(off)(-0.5, 319.5, 319.5, -0.5)思考题 测试集中有哪些识别错误的手写数字图片 汇集整理并分析原因 11. 读取测试集的图片预测值神经网络的输出为10 pre_resulttorch.zeros(len(test_dataset),10) for i in range(len(test_dataset)):pre_result[i,:]model(torch.reshape(test_dataset[i][0],(-1,3,32,32))) pre_result tensor([[-0.4934, -1.0982, 0.4072, ..., -0.4038, -1.1655, -0.8201],[ 4.0154, 4.4736, -0.2921, ..., -2.3925, 4.3176, 4.1910],[ 1.3858, 3.2022, -0.7004, ..., -2.2767, 3.0923, 2.3740],...,[-1.9551, -3.8085, 1.7917, ..., 2.1104, -2.9573, -1.7387],[ 0.6681, -0.5328, 0.3059, ..., 0.1170, -2.5236, -0.5746],[-0.5194, -2.6185, 1.1929, ..., 3.7749, -2.3134, -1.5123]],grad_fnCopySlices)pre_result.shapetorch.Size([10000, 10])pre_result[:5]tensor([[-0.4934, -1.0982, 0.4072, 1.7331, -0.4456, 1.6433, 0.1721, -0.4038,-1.1655, -0.8201],[ 4.0154, 4.4736, -0.2921, -3.2882, -1.6234, -4.4814, -3.1241, -2.3925,4.3176, 4.1910],[ 1.3858, 3.2022, -0.7004, -1.0123, -1.7394, -1.6657, -3.2578, -2.2767,3.0923, 2.3740],[ 2.1151, 0.8262, 0.0071, -1.1410, -0.3051, -2.0239, -2.3023, -0.3573,2.9400, 0.5595],[-2.3524, -2.7907, 1.9834, 2.1088, 2.7645, 1.1118, 2.9782, -0.3876,-3.2325, -2.3916]], grad_fnSliceBackward0)#显示这10000张图片的标签 label_10000[test_dataset[i][1] for i in range(10000)] label_10000[3,8,8,0,6,6,1,6,3,1,0,9,5,7,9,8,5,7,8,6,7,0,4,9,5,2,4,0,9,6,6,5,4,5,9,2,4,1,9,5,4,6,5,6,0,9,3,9,7,6,9,8,0,3,8,8,7,7,4,6,7,3,6,3,6,2,1,2,3,7,2,6,8,8,0,2,9,3,3,8,8,1,1,7,2,5,2,7,8,9,0,3,8,6,4,6,6,0,0,7,4,5,6,3,1,1,3,6,8,7,4,0,6,2,1,3,0,4,2,7,8,3,1,2,8,0,8,3,5,2,4,1,8,9,1,2,9,7,2,9,6,5,6,3,8,7,6,2,5,2,8,9,6,0,0,5,2,9,5,4,2,1,6,6,8,4,8,4,5,0,9,9,9,8,9,9,3,7,5,0,0,5,2,2,3,8,6,3,4,0,5,8,0,1,7,2,8,8,7,8,5,1,8,7,1,3,0,5,7,9,7,4,5,9,8,0,7,9,8,2,7,6,9,4,3,9,6,4,7,6,5,1,5,8,8,0,4,0,5,5,1,1,8,9,0,3,1,9,2,2,5,3,9,9,4,0,3,0,0,9,8,1,5,7,0,8,2,4,7,0,2,3,6,3,8,5,0,3,4,3,9,0,6,1,0,9,1,0,7,9,1,2,6,9,3,4,6,0,0,6,6,6,3,2,6,1,8,2,1,6,8,6,8,0,4,0,7,7,5,5,3,5,2,3,4,1,7,5,4,6,1,9,3,6,6,9,3,8,0,7,2,6,2,5,8,5,4,6,8,9,9,1,0,2,2,7,3,2,8,0,9,5,8,1,9,4,1,3,8,1,4,7,9,4,2,7,0,7,0,6,6,9,0,9,2,8,7,2,2,5,1,2,6,2,9,6,2,3,0,3,9,8,7,8,8,4,0,1,8,2,7,9,3,6,1,9,0,7,3,7,4,5,0,0,2,9,3,4,0,6,2,5,3,7,3,7,2,5,3,1,1,4,9,9,5,7,5,0,2,2,2,9,7,3,9,4,3,5,4,6,5,6,1,4,3,4,4,3,7,8,3,7,8,0,5,7,6,0,5,4,8,6,8,5,5,9,9,9,5,0,1,0,8,1,1,8,0,2,2,0,4,6,5,4,9,4,7,9,9,4,5,6,6,1,5,3,8,9,5,8,5,7,0,7,0,5,0,0,4,6,9,0,9,5,6,6,6,2,9,0,1,7,6,7,5,9,1,6,2,5,5,5,8,5,9,4,6,4,3,2,0,7,6,2,2,3,9,7,9,2,6,7,1,3,6,6,8,9,7,5,4,0,8,4,0,9,3,4,8,9,6,9,2,6,1,4,7,3,5,3,8,5,0,2,1,6,4,3,3,9,6,9,8,8,5,8,6,6,2,1,7,7,1,2,7,9,9,4,4,1,2,5,6,8,7,6,8,3,0,5,5,3,0,7,9,1,3,4,4,5,3,9,5,6,9,2,1,1,4,1,9,4,7,6,3,8,9,0,1,3,6,3,6,3,2,0,3,1,0,5,9,6,4,8,9,6,9,6,3,0,3,2,2,7,8,3,8,2,7,5,7,2,4,8,7,4,2,9,8,8,6,8,8,7,4,3,3,8,4,9,4,8,8,1,8,2,1,3,6,5,4,2,7,9,9,4,1,4,1,3,2,7,0,7,9,7,6,6,2,5,9,2,9,1,2,2,6,8,2,1,3,6,6,0,1,2,7,0,5,4,6,1,6,4,0,2,2,6,0,5,9,1,7,6,7,0,3,9,6,8,3,0,3,4,7,7,1,4,7,2,7,1,4,7,4,4,8,4,7,7,5,3,7,2,0,8,9,5,8,3,6,2,0,8,7,3,7,6,5,3,1,3,2,2,5,4,1,2,9,2,7,0,7,2,1,3,2,0,2,4,7,9,8,9,0,7,7,0,7,8,4,6,3,3,0,1,3,7,0,1,3,1,4,2,3,8,4,2,3,7,8,4,3,0,9,0,0,1,0,4,4,6,7,6,1,1,3,7,3,5,2,6,6,5,8,7,1,6,8,8,5,3,0,4,0,1,3,8,8,0,6,9,9,9,5,5,8,6,0,0,4,2,3,2,7,2,2,5,9,8,9,1,7,4,0,3,0,1,3,8,3,9,6,1,4,7,0,3,7,8,9,1,1,6,6,6,6,9,1,9,9,4,2,1,7,0,6,8,1,9,2,9,0,4,7,8,3,1,2,0,1,5,8,4,6,3,8,1,3,8,...]import numpy pre_10000pre_result.detach() pre_10000tensor([[-0.4934, -1.0982, 0.4072, ..., -0.4038, -1.1655, -0.8201],[ 4.0154, 4.4736, -0.2921, ..., -2.3925, 4.3176, 4.1910],[ 1.3858, 3.2022, -0.7004, ..., -2.2767, 3.0923, 2.3740],...,[-1.9551, -3.8085, 1.7917, ..., 2.1104, -2.9573, -1.7387],[ 0.6681, -0.5328, 0.3059, ..., 0.1170, -2.5236, -0.5746],[-0.5194, -2.6185, 1.1929, ..., 3.7749, -2.3134, -1.5123]])pre_10000numpy.array(pre_10000) pre_10000array([[-0.49338394, -1.098238 , 0.40724754, ..., -0.40375623,-1.165497 , -0.820113 ],[ 4.0153656 , 4.4736323 , -0.29209492, ..., -2.392501 ,4.317573 , 4.190993 ],[ 1.3858219 , 3.2021556 , -0.70040375, ..., -2.2767155 ,3.092283 , 2.373978 ],...,[-1.9550545 , -3.808494 , 1.7917161 , ..., 2.110389 ,-2.9572597 , -1.7386926 ],[ 0.66809845, -0.5327946 , 0.30590305, ..., 0.11701592,-2.5236375 , -0.5746133 ],[-0.51935434, -2.6184506 , 1.1929085 , ..., 3.7748828 ,-2.3134274 , -1.5123445 ]], dtypefloat32)12. 采用pandas可视化数据 import pandas as pd tablepd.DataFrame(zip(pre_10000,label_10000)) table010[-0.49338394, -1.098238, 0.40724754, 1.7330961...31[4.0153656, 4.4736323, -0.29209492, -3.2882178...82[1.3858219, 3.2021556, -0.70040375, -1.0123051...83[2.11508, 0.82618773, 0.007076204, -1.1409527,...04[-2.352432, -2.7906854, 1.9833877, 2.1087575, ...6.........9995[-0.55809855, -4.3891077, -0.3040389, 3.001731...89996[-2.7151718, -4.1596007, 1.2393914, 2.8491826,...39997[-1.9550545, -3.808494, 1.7917161, 2.6365147, ...59998[0.66809845, -0.5327946, 0.30590305, -0.182045...19999[-0.51935434, -2.6184506, 1.1929085, 0.1288419...7 10000 rows × 2 columns table[0].valuesarray([array([-0.49338394, -1.098238 , 0.40724754, 1.7330961 , -0.4455951 ,1.6433077 , 0.1720748 , -0.40375623, -1.165497 , -0.820113 ],dtypefloat32) ,array([ 4.0153656 , 4.4736323 , -0.29209492, -3.2882178 , -1.6234205 ,-4.481386 , -3.1240807 , -2.392501 , 4.317573 , 4.190993 ],dtypefloat32) ,array([ 1.3858219 , 3.2021556 , -0.70040375, -1.0123051 , -1.7393746 ,-1.6656632 , -3.2578242 , -2.2767155 , 3.092283 , 2.373978 ],dtypefloat32) ,...,array([-1.9550545 , -3.808494 , 1.7917161 , 2.6365147 , 0.37311587,3.545672 , -0.43889195, 2.110389 , -2.9572597 , -1.7386926 ],dtypefloat32) ,array([ 0.66809845, -0.5327946 , 0.30590305, -0.18204585, 2.0045712 ,0.47369143, -0.3122899 , 0.11701592, -2.5236375 , -0.5746133 ],dtypefloat32) ,array([-0.51935434, -2.6184506 , 1.1929085 , 0.1288419 , 1.8770852 ,0.4296908 , -0.22015049, 3.7748828 , -2.3134274 , -1.5123445 ],dtypefloat32) ],dtypeobject)table[pred][np.argmax(table[0][i]) for i in range(table.shape[0])] table01pred0[-0.49338394, -1.098238, 0.40724754, 1.7330961...331[4.0153656, 4.4736323, -0.29209492, -3.2882178...812[1.3858219, 3.2021556, -0.70040375, -1.0123051...813[2.11508, 0.82618773, 0.007076204, -1.1409527,...084[-2.352432, -2.7906854, 1.9833877, 2.1087575, ...66............9995[-0.55809855, -4.3891077, -0.3040389, 3.001731...859996[-2.7151718, -4.1596007, 1.2393914, 2.8491826,...339997[-1.9550545, -3.808494, 1.7917161, 2.6365147, ...559998[0.66809845, -0.5327946, 0.30590305, -0.182045...149999[-0.51935434, -2.6184506, 1.1929085, 0.1288419...77 10000 rows × 3 columns 13. 对预测错误的样本点进行可视化 mismatchtable[table[1]!table[pred]]mismatch01pred1[4.0153656, 4.4736323, -0.29209492, -3.2882178...812[1.3858219, 3.2021556, -0.70040375, -1.0123051...813[2.11508, 0.82618773, 0.007076204, -1.1409527,...088[0.02641207, -3.6653092, 2.294829, 2.2884543, ...3512[-1.4556388, -1.7955011, -0.6100754, 1.169481,...56............9989[-0.2553262, -2.8777533, 3.4579017, 0.3079242,...249993[-0.077826336, -3.14616, 0.8994149, 3.5604722,...539994[-1.2543154, -2.4472265, 0.6754027, 2.0582433,...369995[-0.55809855, -4.3891077, -0.3040389, 3.001731...859998[0.66809845, -0.5327946, 0.30590305, -0.182045...14 4657 rows × 3 columns from matplotlib import pyplot as plt plt.scatter(mismatch[1],mismatch[pred])matplotlib.collections.PathCollection at 0x1b3a92ef91014. 看看错误样本被预测为哪些数据 mismatch[mismatch[1]9].sort_values(pred).indexInt64Index([2129, 1465, 2907, 787, 2902, 2307, 4588, 5737, 8276, 8225,...7635, 7553, 7526, 3999, 1626, 1639, 4193, 7198, 3957, 3344],dtypeint64, length396)idx_lstmismatch[mismatch[1]9].sort_values(pred).index.values idx_lst,len(idx_lst)(array([2129, 1465, 2907, 787, 2902, 2307, 4588, 5737, 8276, 8225, 8148,4836, 1155, 7218, 8034, 7412, 5069, 1629, 5094, 5109, 7685, 5397,1427, 5308, 8727, 2960, 2491, 6795, 1997, 6686, 9449, 6545, 8985,9401, 3564, 6034, 383, 9583, 9673, 507, 3288, 6868, 9133, 9085,577, 4261, 6974, 411, 6290, 5416, 5350, 5950, 5455, 5498, 6143,5964, 5864, 5877, 6188, 5939, 14, 5300, 3501, 3676, 3770, 3800,3850, 3893, 3902, 4233, 4252, 4253, 4276, 5335, 4297, 4418, 4445,4536, 4681, 6381, 4929, 4945, 5067, 5087, 5166, 5192, 4364, 4928,7024, 6542, 8144, 8312, 8385, 8406, 8453, 8465, 8521, 8585, 8673,8763, 8946, 9067, 9069, 9199, 9209, 9217, 9280, 9403, 9463, 9518,9692, 9743, 9871, 9875, 9881, 8066, 6509, 8057, 7826, 6741, 6811,6814, 6840, 6983, 7007, 3492, 7028, 7075, 7121, 7232, 7270, 7424,7431, 7444, 7492, 7499, 7501, 7578, 7639, 7729, 7767, 7792, 7818,7824, 7942, 3459, 4872, 1834, 1487, 1668, 1727, 1732, 1734, 1808,1814, 1815, 1831, 1927, 2111, 2126, 2190, 2246, 2290, 2433, 2596,2700, 2714, 1439, 1424, 1376, 1359, 28, 151, 172, 253, 259,335, 350, 591, 625, 2754, 734, 940, 951, 970, 1066, 1136,1177, 1199, 1222, 1231, 853, 2789, 9958, 2946, 3314, 3307, 2876,3208, 3166, 2944, 2817, 2305, 7522, 7155, 7220, 4590, 2899, 2446,2186, 7799, 9492, 3163, 4449, 2027, 2387, 1064, 3557, 2177, 654,9791, 2670, 2514, 2495, 3450, 8972, 3210, 3755, 2756, 7967, 3970,4550, 6017, 938, 744, 6951, 3397, 4852, 3133, 7931, 707, 3312,7470, 6871, 8292, 7100, 9529, 9100, 3853, 9060, 9732, 2521, 3789,2974, 5311, 3218, 5736, 3055, 7076, 1220, 9147, 1344, 532, 8218,3569, 1008, 8475, 8877, 1582, 8936, 4758, 1837, 9517, 252, 5832,1916, 6369, 4979, 9324, 6218, 9777, 7923, 4521, 2868, 213, 8083,5952, 5579, 4508, 5488, 2460, 5332, 5180, 8323, 8345, 3776, 2568,5151, 4570, 2854, 8488, 4874, 680, 2810, 1285, 6136, 3339, 9143,6852, 1906, 7067, 7073, 2975, 1924, 6804, 6755, 9299, 2019, 9445,9560, 360, 1601, 7297, 9122, 6377, 9214, 6167, 3980, 394, 7491,7581, 9349, 8953, 222, 139, 530, 3577, 9868, 247, 9099, 9026,209, 538, 3229, 9258, 585, 9204, 9643, 1492, 3609, 6570, 6561,6469, 6435, 6419, 2155, 6275, 4481, 2202, 1987, 2271, 2355, 2366,2432, 5400, 2497, 2727, 4931, 4619, 9884, 5902, 8796, 6848, 6960,8575, 8413, 981, 8272, 8145, 3172, 1221, 3168, 1256, 1889, 1291,3964, 7635, 7553, 7526, 3999, 1626, 1639, 4193, 7198, 3957, 3344],dtypeint64),396)import numpy as np imgnp.stack(list(test_dataset[idx_lst[i]][0][0] for i in range(5)),axis1).reshape(32,32*5) plt.imshow(img) plt.axis(off)(-0.5, 159.5, 31.5, -0.5)#显示4行 import numpy as np img20np.stack(tuple(np.stack(tuple(test_dataset[idx_lst[ij*5]][0][0] for i in range(5)),axis1).reshape(32,32*5) for j in range(4)),axis0).reshape(32*4,32*5) plt.imshow(img20) plt.axis(off)(-0.5, 159.5, 127.5, -0.5)15.输出错误的模型类别 idx_lstmismatch[mismatch[1]9].index.values table.iloc[idx_lst[:], 2].valuesarray([1, 1, 8, 1, 1, 8, 7, 8, 8, 6, 1, 1, 1, 1, 7, 0, 7, 0, 0, 8, 6, 8,0, 8, 1, 1, 3, 7, 5, 1, 4, 0, 1, 4, 1, 1, 1, 8, 6, 3, 1, 1, 0, 1,1, 6, 8, 1, 1, 8, 7, 8, 6, 1, 1, 1, 0, 1, 0, 1, 8, 6, 7, 8, 0, 8,1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 8, 7, 6, 7, 1, 8, 0, 7, 3, 1, 1, 0,8, 3, 3, 1, 8, 1, 8, 1, 2, 0, 8, 8, 3, 8, 1, 3, 7, 0, 3, 8, 3, 5,7, 1, 3, 1, 1, 8, 1, 3, 1, 7, 1, 7, 7, 1, 3, 0, 0, 1, 1, 0, 5, 7,6, 4, 3, 1, 8, 8, 1, 3, 5, 8, 0, 1, 5, 1, 7, 8, 4, 3, 1, 1, 1, 3,0, 6, 8, 8, 1, 3, 1, 7, 5, 1, 1, 5, 1, 1, 8, 8, 4, 7, 8, 8, 1, 1,1, 0, 1, 1, 1, 1, 1, 3, 8, 7, 7, 1, 4, 7, 0, 2, 8, 1, 6, 0, 4, 1,7, 1, 1, 8, 1, 6, 1, 0, 1, 0, 0, 7, 1, 7, 1, 1, 0, 5, 7, 1, 1, 0,8, 1, 1, 7, 1, 7, 5, 0, 6, 1, 1, 8, 1, 1, 7, 1, 4, 0, 7, 1, 7, 1,6, 8, 1, 6, 7, 1, 8, 8, 8, 1, 1, 0, 8, 8, 0, 1, 7, 0, 7, 1, 1, 1,8, 7, 0, 5, 4, 8, 0, 1, 1, 1, 1, 7, 7, 1, 6, 5, 1, 2, 8, 0, 2, 1,1, 7, 0, 1, 1, 1, 5, 7, 1, 1, 1, 2, 8, 8, 1, 7, 8, 1, 0, 1, 1, 1,3, 1, 1, 1, 7, 4, 1, 4, 0, 1, 1, 7, 1, 8, 0, 6, 0, 8, 0, 5, 1, 7,7, 1, 1, 8, 1, 1, 6, 7, 1, 8, 1, 1, 0, 1, 8, 6, 6, 1, 8, 3, 0, 8,5, 1, 1, 0, 8, 5, 7, 0, 7, 6, 1, 8, 1, 7, 1, 8, 1, 7, 6, 8, 0, 1,7, 0, 1, 3, 6, 1, 5, 7, 0, 8, 0, 1, 5, 1, 6, 3, 8, 1, 1, 1, 8, 1],dtypeint64)arr2table.iloc[idx_lst[:], 2].values print(错误模型共 str(len(arr2)) 个) for i in range(33):for j in range(12):print(classes[arr2[ji*12]],end )print()错误模型共396个 car car ship car car ship horse ship ship frog car car car car horse plane horse plane plane ship frog ship plane ship car car cat horse dog car deer plane car deer car car car ship frog cat car car plane car car frog ship car car ship horse ship frog car car car plane car plane car ship frog horse ship plane ship car car car car car car car car car frog ship horse frog horse car ship plane horse cat car car plane ship cat cat car ship car ship car bird plane ship ship cat ship car cat horse plane cat ship cat dog horse car cat car car ship car cat car horse car horse horse car cat plane plane car car plane dog horse frog deer cat car ship ship car cat dog ship plane car dog car horse ship deer cat car car car cat plane frog ship ship car cat car horse dog car car dog car car ship ship deer horse ship ship car car car plane car car car car car cat ship horse horse car deer horse plane bird ship car frog plane deer car horse car car ship car frog car plane car plane plane horse car horse car car plane dog horse car car plane ship car car horse car horse dog plane frog car car ship car car horse car deer plane horse car horse car frog ship car frog horse car ship ship ship car car plane ship ship plane car horse plane horse car car car ship horse plane dog deer ship plane car car car car horse horse car frog dog car bird ship plane bird car car horse plane car car car dog horse car car car bird ship ship car horse ship car plane car car car cat car car car horse deer car deer plane car car horse car ship plane frog plane ship plane dog car horse horse car car ship car car frog horse car ship car car plane car ship frog frog car ship cat plane ship dog car car plane ship dog horse plane horse frog car ship car horse car ship car horse frog ship plane car horse plane car cat frog car dog horse plane ship plane car dog car frog cat ship car car car ship car
http://www.yutouwan.com/news/297293/

相关文章:

  • 重庆建一个网站大概要多少钱南昌做网站和微信小程序的公司
  • 上海网站开发公司排名中国建设银行的网站用户名是什么
  • 郑州网站seo公司网站添加在线支付功能
  • 美耐皿 技术支持 东莞网站建设全国最新网站备案查询
  • 厦门服装企业网站推广如何建设一个属于自己的网站
  • 泉州自助建站系统网站备案换主体
  • 网站建设投资预算八戒影视大全
  • 东山网站建设广西区建设厅网站
  • 菏泽城乡住房建设局网站高明网站建设首选公司
  • 心理咨询中心网站模板温州15000 做网站的工作
  • 湖南软件定制开发郑州网站建设seo优化
  • 网站建设包括哪些知识品牌建设成效
  • 手机版的学习网站网站建设人员培训纲要
  • 教做宝宝辅食的网站网站怎么做漂亮点
  • 做外贸有哪些网站比较好设计集团有限公司
  • 网站返利二维码怎么做济南做网站的中企
  • 外贸网站 php广告平台推广渠道
  • 做网站备案是承诺书在哪下载关于企业网站建设数据现状分析
  • 模板网站建设多少钱wordpress 企业模板
  • 如何做网络网站推广wordpress的xmlrpc
  • 个人品牌网站建设手机网站设计公司优选亿企邦
  • ps做网站头部的图排名查询系统
  • 建设部监理工程师网站宿迁网站建设案例
  • 海米云网站建设免费网站后台管理系统模板
  • wordpress外链站内打开上海市建设工程材料网站
  • 网站建设模板html5结构的网站
  • 中山做网站的公司哪家好学生求职网站的需求分析怎么做
  • 网站做文件检查wordpress多久被收录
  • 苏州晶体公司网站网站做的和别人一样违法吗
  • 手机网站商城建设答辩上海注册公司费用