当前位置: 首页 > news >正文

济南网站建设认可搜点网络网络推广员工资多少钱

济南网站建设认可搜点网络,网络推广员工资多少钱,怎么做网站表格,制作企业网站的目的序列模型 1. 统计工具1.1 自回归模型1.2 马尔可夫模型 2. 训练3. 预测4. 小结 序列模型是一类机器学习模型#xff0c;用于处理具有时序关系的数据。这些模型被广泛应用于自然语言处理、音频处理、时间序列分析等领域。 以下是几种常见的序列模型#xff1a; 隐马尔可夫模型… 序列模型 1. 统计工具1.1 自回归模型1.2 马尔可夫模型 2. 训练3. 预测4. 小结 序列模型是一类机器学习模型用于处理具有时序关系的数据。这些模型被广泛应用于自然语言处理、音频处理、时间序列分析等领域。 以下是几种常见的序列模型 隐马尔可夫模型Hidden Markov ModelsHMMsHMM是一种基于概率的序列模型在许多序列建模问题中被广泛使用如语音识别、自然语言处理和生物信息学。HMM包括一个隐藏状态序列和一个对应的观测序列。通过观测序列来推断最可能的隐藏状态序列。 循环神经网络Recurrent Neural NetworksRNNsRNN是一种能够处理序列数据的神经网络。它通过在网络中引入循环连接来保留先前的信息并将其用于当前的预测。RNN在处理具有长期依赖关系的序列数据时表现出色但在面对较长的序列时可能会出现梯度消失或梯度爆炸的问题。 长短期记忆网络Long Short-Term MemoryLSTMLSTM是一种改进的RNN架构专门设计用于解决长期依赖性问题。它通过引入门控机制来控制信息的流动和保留从而有效地捕捉到长期的依赖关系。LSTM在自然语言处理、时间序列分析等任务中被广泛使用。 双向循环神经网络Bidirectional Recurrent Neural NetworksBiRNNsBiRNN是一种结合了正向和反向循环神经网络的模型。它通过分别处理正向和反向的输入序列从而充分利用前后上下文信息。BiRNN在许多序列建模任务中表现出良好的性能如命名实体识别、句子分类等。 注意力机制模型Attention Mechanism注意力机制是一种增强序列模型性能的技术它允许模型根据输入序列中的不同部分自适应地分配不同的关注权重。这种机制使得模型能够更好地集中注意力并理解与任务相关的重要特征。 1. 统计工具 1.1 自回归模型 只需要长度为 τ 的时间跨度好处是参数总量不变。这种模型被称为自回归模型即对自己执行回归。保留对过去观测的总结ht同时更新预测xt和总结ht。这种模型被称为隐变量自回归模型。 1.2 马尔可夫模型 一阶马尔可夫模型 2. 训练 使用正弦函数和一些可加性噪声来生成序列数据 时间步为12…1000。 # 使用正弦函数和可加噪声生成序列数据 %matplotlib inline import torch from torch import nn from d2l import torch as d2lT 1000 time torch.arange(1, T 1, dtypetorch.float32) x torch.sin(0.01 * time) torch.normal(0, 0.2, (T, )) d2l.plot(time, [x], time, x, xlim[1, 1000], figsize(6, 3))将序列转换为模型的特征—标签对 将序列转换为模型的特征—标签对1、数据样本为t-τ到t-1少了τ个2、如果序列足够长就丢弃这几项或者用零填充序列# 仅使用前600个“特征-标签”对进行训练 tau 4 features torch.zeros((T - tau, tau))for i in range(tau):features[:, i] x[i: T - tau i]print(features) labels x[tau:].reshape((-1, 1))print(features.shape) print(x的前10个元素\n, x[:10]) print(labels.shape) print(前10个标签\n, labels[:10])batch_size, n_train 16, 600 train_iter d2l.load_array((features[:n_train], labels[:n_train]),batch_size, is_trainTrue) print(features[:4]) print(x[:16])初始化网络权重的函数 # 初始化网络权重的函数 def init_weights(m):if type(m) nn.Linear:nn.init.xavier_normal_(m.weight)# 一个有两个全连接层的多层感知机ReLU激活函数和平方损失 def get_net():net nn.Sequential(nn.Linear(4, 10),nn.ReLU(),nn.Linear(10, 1))net.apply(init_weights)return net# 平方损失注意MSELoss计算平方误差时不带系数1/2 loss nn.MSELoss(reductionnone)训练模型 def train(net, train_iter, loss, epochs, lr):trainer torch.optim.Adam(net.parameters(), lr)for epoch in range(epochs):for X, y in train_iter:trainer.zero_grad()l loss(net(X), y)l.sum().backward()trainer.step()print(fepoch {epoch 1},floss:{d2l.evaluate_loss(net, train_iter, loss):f})net get_net() train(net, train_iter, loss, 5, 0.01)3. 预测 # 单步预测 onestep_preds net(features) d2l.plot([time, time[tau:]],[x.detach().numpy(), onestep_preds.detach().numpy()], timex, legend[data, 1-step preds], xlim[1, 1000],figsize(6, 3))k步预测使用自己的预测非原始数据来进行多步预测 # k步预测使用自己的预测非原始数据来进行多步预测 multistep_preds torch.zeros(T) multistep_preds[: n_train tau] x[: n_train tau] for i in range(n_train tau, T):multistep_preds[i] net(multistep_preds[i - tau:i].reshape(1, -1))d2l.plot([time, time[tau:], time[n_train tau:]],[x.detach().numpy(), onestep_preds.detach().numpy(),multistep_preds[n_train tau:].detach().numpy()], time,x, legend[data, 1-step preds, multistep preds],xlim[1, 1000], figsize(6, 3))点划线的预测不理想误差的累积 # 点划线的预测不理想误差的累积 max_steps 64features torch.zeros((T - tau - max_steps 1, tau max_steps)) # 列iitau是来自x的观测其时间步从i到iT-tau-max_steps1 for i in range(tau):features[:, i] x[i: i T - tau - max_steps 1]# 列iitau是来自i-tau1步的预测其时间步从i到iT-tau-max_steps1 for i in range(tau, tau max_steps):features[:, i] net(features[:, i - tau:i]).reshape(-1)steps (1, 4, 16, 64) d2l.plot([time[tau i - 1: T - max_steps i] for i in steps],[features[:, (tau i - 1)].detach().numpy() for i in steps], time, x,legend[f{i}-step preds for i in steps], xlim[5, 1000],figsize(6, 3))4. 小结 内插法在现有观测值之间进行估计和外推法对超出已知观测范围进行预测在实践的难度上差别很大。因此在训练时要尊重其时间顺序即最好不要基于未来的数据进行训练。序列模型的估计需要专门的统计工具两种较流行的选择是自回归模型和隐变量自回归模型。对于时间是向前推进的因果模型正向估计通常比反向估计更容易。对于直到时间步 t 的观测序列其在时间步 tk 的预测输出是“k步预测”。随着我们对预测时间 k 值的增加会造成误差的快速累积和预测质量的极速下降。
http://www.huolong8.cn/news/442702/

相关文章:

  • 福建厦门网站建设网站背景大小
  • 毕设做网站是不是太low网易梦幻西游网页版
  • 安康免费做网站公司网站标题优化技巧
  • 哪个网可以网站备案做效果图常用的网站有哪些软件
  • 宿州外贸网站建设公司返利网网站框架目录
  • 长春个人做网站免费网站推广软件哪个好
  • 建设网站还不如搬砖wordpress 切换中文
  • 怎样给自己的店子做网站六安做网站
  • 超级链接网站模板常州模板建站代理
  • 我想注册网站我怎么做做网站有什么好的推荐
  • 成都网站商城建设公众号开发需要学什么
  • 车床加工东莞网站建设杭州津伟网络科技有限公司
  • 化妆培训学校网站源码 下载做电影网站需要的服务器配置
  • 网站 方案建站怎么赚钱
  • 渭南哪里做网站石家庄物流网站建设
  • 阿里巴巴做外贸的网站东莞英文建站公司
  • 用ip地址做网站临沂网站建设设计公司
  • 企业网站建设的思路房屋不动产查询官网
  • 找生产厂家的网站百度sem竞价推广电子书
  • 漳州网站建设去博大a优南京百度seo
  • 和建设银行类似的网站中文手机编程软件app
  • 网站外包项目两人合伙做网站但不准备开公司
  • 梁山专做网站的公司小说网站做编辑
  • 宁夏建设监理协会网站可以做图片视频的网站
  • 河北城乡建设网站临沭县建设局官方网站
  • 沧州南皮网站建设call_user_func_array() wordpress
  • 什么网站容易做百度权重戴尔公司网站建设成功的关键
  • 三河市建设厅公示网站python编程下载
  • 广告网站怎么做网页小游戏插件不支持
  • 太和县建设局网站学会计哪个培训机构比较正规