一个企业为什么要建设网站,人才共享网站的建设方案怎么写,网络推广话术技巧,做传销网站违法文章目录 概述1.1 片上互连架构的发展1.1.1 BUS 共享总线结构1.1.2 Crossbar 结构1.1.3 Ring 结构1.1.4 Mesh 网格结构 1.2 ARM 总线互联特点小结1.2.1 NOC 总线互联的特点 下篇文章#xff1a;【ARM CoreLink 系列 1.1 – CoreLink 系列 产品介绍】
概述
在摩尔定律的推动下… 文章目录 概述1.1 片上互连架构的发展1.1.1 BUS 共享总线结构1.1.2 Crossbar 结构1.1.3 Ring 结构1.1.4 Mesh 网格结构 1.2 ARM 总线互联特点小结1.2.1 NOC 总线互联的特点 下篇文章【ARM CoreLink 系列 1.1 – CoreLink 系列 产品介绍】
概述
在摩尔定律的推动下集成电路工艺取得了高速发展单位面积上的晶体管数量不断增加。片上系统System-on-ChipSoC具有集成度高、功耗低、成本低等优势已经成为大规模集成电路系统设计的主流方向解决了通信、图像、计算、消费电子等领域的众多挑战性的难题。随着片上系统SoC的应用需求越来越丰富SoC需要集成越来越多的不同应用的IPIntellectual Property。另外片上多核系统MPSoCMultiProcessor-System-on-Chip也已经成为必然的发展趋势。
随着SoC的高度集成以及MPSoC的高速发展对片上通信提出了更高的要求。片上网络技术Network-on-ChipNoC在这个时候也得到了极大的应用它本质上就是提供一种解决芯片内不同IP或者不同核心之间数据传输的片上通信方案。
1.1 片上互连架构的发展
片上互联架构的发展主要经历了三个阶段共享总线Bus、Crossbar以及片上网络NoC。
1.1.1 BUS 共享总线结构
传统的SoC片上通信结构一般采用共享总线的方式。在共享总线结构中所有的处理器和 IP 模块共享一条或多条总线。当有多个处理器同时访问一条总线时候需要有仲裁机制来决定总线的所有权。共享总线片上通信系统结构一般比较简单且硬件代价也小。但是带宽有限而且带宽也没法随着IP的增多而进行扩展。1996年ARM公司提出的AMBA总线广泛应用于嵌入式微处理器的片上总线现在已经成为事实上的工业标准。 图 1-1 典型的AMBA总线系统 1.1.2 Crossbar 结构
对于传统的共享总线当多个处理器同时去访问不同的 IP 的时候因为需要仲裁机制去决定总线的所有权所以传统的总线方式在这种情况下就会造成一定的瓶颈最大的问题就是访问的延时。在这种情况下为了满足多处理同时访问的需求和提高整个系统的带宽一种新的解决方案Crossbar孕育而生如图 1-2 就是一个典型的 Crossbar 结构。
图 1-2 典型的单向8x8 Crossbar Crossbar 结构 可以同时实现多个主从设备的数据传输也能实现一个主设备对多个从设备进行数据广播如图1-3 所示。
图 1-3 Crossbar Crossbar 主要面向对超高带宽要求的系统或者是主设备有经常向多个从设备发送广播数据需求的系统。如果互连组件太多这种结构的内部走线会非常多不利于物理实现对数字后端设计带来很大挑战。比较常见的 Crossbar 类型 IP 如 ARM 公司的 NIC-400。
1.1.3 Ring 结构
环型Ring结构将网络中的节点首尾相连形成一个环状各个模块之间交互方便不需要主控中转功能单元通过网络接口将信息送上环消息在环上逐个节点进行传递每次只能前进一个节点消息到达与目的功能单元连接的节点后被送下环转到网络接口进而传递给目的功能单元。
环型互联进一步划分为单环和双环单环只有一个方向顺时针或逆时针如图1-4所示即使是相邻节点也可能需要经过所有节点才能到达
图 1-4 Single Ring 而双环有两个方向顺时针和逆时针如图1-5 所示:
图 1-5 Dul Ring 消息可以根据源和目的的距离自动选择最近的方向这样的设计可以保证任意两个节点之间的距离不超过总数的一半。因此有效降低延迟相邻节点之间延迟不超过60ns并极大提高性能最高吞吐量可达数百G同时方便扩展只需在环上增加一个节点即可。但随着内核数量的增加环会越来越长从而导致延迟越来越大当内核数多于12个以后整体性能下降明显。比较常见的ring 类型 IP 如ARM公司的CCN。
1.1.4 Mesh 网格结构
二维网格mesh这种拓扑结构可以提供更大的带宽而且是可以模块化通过增加网格的行或列来增加更多的节点ARM的CMN-600就是基于mesh的互连IP。
图 1-5 Mesh 每个节点只与其同行和同列的相邻节点连接。如上图1-6所示共有16个节点每个节点连接一个网络接口16个节点排列成4x4的网格。网格属于多维拓扑至少是2维并可以逐步扩展到3维或更高维。
如图1-7所示IP Core为NoC互连的组件NI为接入NoC的接口R为NoC中的路由器物理链接Physical link为路由器之间的连接总线。
图 1-7 典型的2D mesh的4X4 NOC网络拓扑结构图 NoC的优势主要体现在如下两个方面。 高可扩展性。NoC类似计算机网络的结构当互连的组件增加时NoC的互连复杂度并不会增加很多。而传统的简单总线和交叉开关随着互连模块的增多其互连复杂度呈指数级增加 分层设计。NoC的物理层、传输层和接口是分开的用户可以在传输层方便地自定义传输规则而无须修改模块接口传输层的更改对物理层互连的影响也不大因此不会对NoC的时钟频率造成显著影响。
AMBA 5 CHI协议可提供网络和数据中心等基础设施应用所需的性能和规模。AMBA 5 CHI协议可在单个片上系统扩展32个或更多处理器。 还有一种环面Torus拓扑与网格类似区别在于提供了同行和同列的最远端的两个节点的连线即每行和每列都是一个环。 1.2 ARM 总线互联特点小结
在以 ARM 为主的 SoC系统接口层和协议层采用AMBA协议标准、通信层可采用多种拓扑结构如总线型、Ring型、Crossbar型和Mesh型等。
面向单核系统
APB协议采用总线结构用于低速外设连接AHB/AHB-Lite/AXI协议采用总线结构用于高速外设连接。
面向多核系统
NIC 技术采用 Crossbar 结构(扩展性较强latency比较小因为是点到点对memory controller对带宽分配不够灵活)没有固定拓扑不支持一致性适用于简单场景NoC 技术采用 Mesh 结构没有固定拓扑采用小路由器作为节点连线更少频率更高支持一致性可以连接大量设备CCI 技术采用 Crossbar 结构固定拓扑支持一致性适用于少量处理器CCN 技术采用 Ring 结构通过固定交叉点连成一个环延迟大但频率高支持一致性适用于16核以上处理器CMN 技术采用 Mesh 结构通过固定交叉点形成 NxN 网络支持一致性适用于更多处理器核。
1.2.1 NOC 总线互联的特点
无论所连接的外设是 AXI 的 CPU 或者其他CHI系列的设备比如 DDR或者更高协议的外设NOC 都能够转化为内部的 packet这些 packet 按照一定的格式在它到的拓扑结构里进行传输也就是把标准的协议转化为内部的 package。Package 传输就会有一些特点即使系统变的很复杂它里面的绕线也比较少。NOC 总线在设计的时候就是为了解决高速信号的传输因此很多NOC 总线都考虑到 physical awareness 的特性也就是用工具生成NOC总线的时候它能根据 Feature上的定义及需求 去做虚拟的 PRNOC 总线对后端实现比较友好比如支持多个 Clock domainpower domain这些特性都是 cross bar 总线可能不具备的。所以NOC 总线可以跑在更高的频点上NOC 内部 QoS 机制非常好对带宽的分配对不同应用场景的满足相对于Crossbar 来讲更容易实现。
下篇文章【ARM CoreLink 系列 1.1 – CoreLink 系列 产品介绍】