个人网站可以不备案吗,环保设备在那个网站做,公司制度建设的意义,ps做网站的优点基本概念
在介绍架构之前#xff0c;为了避免部分读者对架构设计中的一些概念不了解#xff0c;下面对几个最基础的概念进行介绍。
1.什么是分布式#xff1f;
系统中的多个模块在不同服务器上部署#xff0c;即可称为分布式系统#xff0c;如Tomcat和数据库分别部署在…基本概念
在介绍架构之前为了避免部分读者对架构设计中的一些概念不了解下面对几个最基础的概念进行介绍。
1.什么是分布式
系统中的多个模块在不同服务器上部署即可称为分布式系统如Tomcat和数据库分别部署在不同的服务器上或两个相同功能的Tomcat分别部署在不同服务器上。
2.什么是高可用
系统中部分节点失效时其他节点能够接替它继续提供服务则可认为系统具有高可用性。
3.什么是集群
一个特定领域的软件部署在多台服务器上并作为一个整体提供一类服务这个整体称为集群。 如Zookeeper中的Master和Slave分别部署在多台服务器上共同组成一个整体提供集中配置服务。 在常见的集群中客户端往往能够连接任意一个节点获得服务并且当集群中一个节点掉线时其他节点往往能够自动的接替它继续提供服务这时候说明集群具有高可用性。
4.什么是负载均衡
请求发送到系统时通过某些方式把请求均匀分发到多个节点上使系统中每个节点能够均匀的处理请求负载则可认为系统是负载均衡的。
5.什么是正向代理和反向代理
系统内部要访问外部网络时统一通过一个代理服务器把请求转发出去在外部网络看来就是代理服务器发起的访问此时代理服务器实现的是正向代理 当外部请求进入系统时代理服务器把该请求转发到系统中的某台服务器上对外部请求来说与之交互的只有代理服务器此时代理服务器实现的是反向代理。 简单来说正向代理是代理服务器代替系统内部来访问外部网络的过程反向代理是外部请求访问系统时通过代理服务器转发到内部服务器的过程。 纯真年代单机架构 以淘宝作为例子在网站最初时应用数量与用户数都较少可以把Tomcat和数据库部署在同一台服务器上。浏览器往www.taobao.com发起请求时首先经过DNS服务器域名系统把域名转换为实际IP地址10.102.4.1浏览器转而访问该IP对应的Tomcat。 架构瓶颈随着用户数的增长Tomcat和数据库之间竞争资源单机性能不足以支撑业务。 第一次演进Tomcat与数据库分开部署 Tomcat和数据库分别独占服务器资源显著提高两者各自性能。 架构瓶颈随着用户数的增长并发读写数据库成为瓶颈。 第二次演进引入本地缓存和分布式缓存 在Tomcat同服务器上或同JVM中增加本地缓存并在外部增加分布式缓存缓存热门商品信息或热门商品的html页面等。通过缓存能把绝大多数请求在读写数据库前拦截掉大大降低数据库压力。 其中涉及的技术包括使用memcached作为本地缓存使用Redis作为分布式缓存还会涉及缓存一致性、缓存穿透/击穿、缓存雪崩、热点数据集中失效等问题。 架构瓶颈缓存抗住了大部分的访问请求随着用户数的增长并发压力主要落在单机的Tomcat上响应逐渐变慢。 ** 第三次演进引入反向代理实现负载均衡** 在多台服务器上分别部署Tomcat使用反向代理软件Nginx把请求均匀分发到每个Tomcat中。此处假设Tomcat最多支持100个并发Nginx最多支持50000个并发那么理论上Nginx把请求分发到500个Tomcat上就能抗住50000个并发。 其中涉及的技术包括Nginx、HAProxy两者都是工作在网络第七层的反向代理软件主要支持http协议还会涉及session共享、文件上传下载的问题。 架构瓶颈反向代理使应用服务器可支持的并发量大大增加但并发量的增长也意味着更多请求穿透到数据库单机的数据库最终成为瓶颈。 第四次演进数据库读写分离 把数据库划分为读库和写库读库可以有多个通过同步机制把写库的数据同步到读库对于需要查询最新写入数据场景可通过在缓存中多写一份通过缓存获得最新数据。 其中涉及的技术包括Mycat它是数据库中间件可通过它来组织数据库的分离读写和分库分表客户端通过它来访问下层数据库还会涉及数据同步数据一致性的问题。 架构瓶颈业务逐渐变多不同业务之间的访问量差距较大不同业务直接竞争数据库相互影响性能。 第五次演进数据库按业务分库 把不同业务的数据保存到不同的数据库中使业务之间的资源竞争降低对于访问量大的业务可以部署更多的服务器来支撑。这样同时导致跨业务的表无法直接做关联分析需要通过其他途径来解决但这不是本文讨论的重点有兴趣的可以自行搜索解决方案。 架构瓶颈随着用户数的增长单机的写库会逐渐会达到性能瓶颈。 第六次演进把大表拆分为小表 比如针对评论数据可按照商品ID进行hash路由到对应的表中存储针对支付记录可按照小时创建表每个小时表继续拆分为小表使用用户ID或记录编号来路由数据。只要实时操作的表数据量足够小请求能够足够均匀的分发到多台服务器上的小表那数据库就能通过水平扩展的方式来提高性能。其中前面提到的Mycat也支持在大表拆分为小表情况下的访问控制。 这种做法显著的增加了数据库运维的难度对DBA的要求较高。数据库设计到这种结构时已经可以称为分布式数据库但是这只是一个逻辑的数据库整体数据库里不同的组成部分是由不同的组件单独来实现的如分库分表的管理和请求分发由Mycat实现SQL的解析由单机的数据库实现读写分离可能由网关和消息队列来实现查询结果的汇总可能由数据库接口层来实现等等这种架构其实是MPP大规模并行处理架构的一类实现。 目前开源和商用都已经有不少MPP数据库开源中比较流行的有Greenplum、TiDB、Postgresql XC、HAWQ等商用的如南大通用的GBase、睿帆科技的雪球DB、华为的LibrA等等不同的MPP数据库的侧重点也不一样如TiDB更侧重于分布式OLTP场景Greenplum更侧重于分布式OLAP场景这些MPP数据库基本都提供了类似Postgresql、Oracle、MySQL那样的SQL标准支持能力能把一个查询解析为分布式的执行计划分发到每台机器上并行执行最终由数据库本身汇总数据进行返回也提供了诸如权限管理、分库分表、事务、数据副本等能力并且大多能够支持100个节点以上的集群大大降低了数据库运维的成本并且使数据库也能够实现水平扩展。推荐大厂在用的分库分表方案都在这了 架构瓶颈数据库和Tomcat都能够水平扩展可支撑的并发大幅提高随着用户数的增长最终单机的Nginx会成为瓶颈。 第七次演进使用LVS或F5来使多个Nginx负载均衡 由于瓶颈在Nginx因此无法通过两层的Nginx来实现多个Nginx的负载均衡。图中的LVS和F5是工作在网络第四层的负载均衡解决方案其中LVS是软件运行在操作系统内核态可对TCP请求或更高层级的网络协议进行转发因此支持的协议更丰富并且性能也远高于Nginx可假设单机的LVS可支持几十万个并发的请求转发F5是一种负载均衡硬件与LVS提供的能力类似性能比LVS更高但价格昂贵。由于LVS是单机版的软件若LVS所在服务器宕机则会导致整个后端系统都无法访问因此需要有备用节点。可使用keepalived软件模拟出虚拟IP然后把虚拟IP绑定到多台LVS服务器上浏览器访问虚拟IP时会被路由器重定向到真实的LVS服务器当主LVS服务器宕机时keepalived软件会自动更新路由器中的路由表把虚拟IP重定向到另外一台正常的LVS服务器从而达到LVS服务器高可用的效果。 此处需要注意的是上图中从Nginx层到Tomcat层这样画并不代表全部Nginx都转发请求到全部的Tomcat在实际使用时可能会是几个Nginx下面接一部分的Tomcat这些Nginx之间通过keepalived实现高可用其他的Nginx接另外的Tomcat这样可接入的Tomcat数量就能成倍的增加。 架构瓶颈由于LVS也是单机的随着并发数增长到几十万时LVS服务器最终会达到瓶颈此时用户数达到千万甚至上亿级别用户分布在不同的地区与服务器机房距离不同导致了访问的延迟会明显不同。 第八次演进通过DNS轮询实现机房间的负载均衡 在DNS服务器中可配置一个域名对应多个IP地址每个IP地址对应到不同的机房里的虚拟IP。当用户访问www.taobao.com时DNS服务器会使用轮询策略或其他策略来选择某个IP供用户访问。此方式能实现机房间的负载均衡至此系统可做到机房级别的水平扩展千万级到亿级的并发量都可通过增加机房来解决系统入口处的请求并发量不再是问题。 架构瓶颈随着数据的丰富程度和业务的发展检索、分析等需求越来越丰富单单依靠数据库无法解决如此丰富的需求。 第九次演进引入NoSQL数据库和搜索引擎等技术 当数据库中的数据多到一定规模时数据库就不适用于复杂的查询了往往只能满足普通查询的场景。对于统计报表场景在数据量大时不一定能跑出结果而且在跑复杂查询时会导致其他查询变慢对于全文检索、可变数据结构等场景数据库天生不适用。因此需要针对特定的场景引入合适的解决方案。如对于海量文件存储可通过分布式文件系统HDFS解决对于key value类型的数据可通过HBase和Redis等方案解决对于全文检索场景可通过搜索引擎如ElasticSearch解决对于多维分析场景可通过Kylin或Druid等方案解决。 当然引入更多组件同时会提高系统的复杂度不同的组件保存的数据需要同步需要考虑一致性的问题需要有更多的运维手段来管理这些组件等。 架构瓶颈引入更多组件解决了丰富的需求业务维度能够极大扩充随之而来的是一个应用中包含了太多的业务代码业务的升级迭代变得困难。 第十次演进大应用拆分为小应用 按照业务板块来划分应用代码使单个应用的职责更清晰相互之间可以做到独立升级迭代。这时候应用之间可能会涉及到一些公共配置可以通过分布式配置中心Zookeeper来解决。 架构瓶颈不同应用之间存在共用的模块由应用单独管理会导致相同代码存在多份导致公共功能升级时全部应用代码都要跟着升级。 第十一次演进复用的功能抽离成微服务 如用户管理、订单、支付、鉴权等功能在多个应用中都存在那么可以把这些功能的代码单独抽取出来形成一个单独的服务来管理这样的服务就是所谓的微服务应用和服务之间通过HTTP、TCP或RPC请求等多种方式来访问公共服务每个单独的服务都可以由单独的团队来管理。此外可以通过Dubbo、SpringCloud等框架实现服务治理、限流、熔断、降级等功能提高服务的稳定性和可用性。 架构瓶颈不同服务的接口访问方式不同应用代码需要适配多种访问方式才能使用服务此外应用访问服务服务之间也可能相互访问调用链将会变得非常复杂逻辑变得混乱。 第十二次演进引入企业服务总线ESB屏蔽服务接口的访问差异 通过ESB统一进行访问协议转换应用统一通过ESB来访问后端服务服务与服务之间也通过ESB来相互调用以此降低系统的耦合程度。 这种单个应用拆分为多个应用公共服务单独抽取出来来管理并使用企业消息总线来解除服务之间耦合问题的架构就是所谓的SOA面向服务架构这种架构与微服务架构容易混淆因为表现形式十分相似。 个人理解微服务架构更多是指把系统里的公共服务抽取出来单独运维管理的思想而SOA架构则是指一种拆分服务并使服务接口访问变得统一的架构思想SOA架构中包含了微服务的思想。 架构瓶颈业务不断发展应用和服务都会不断变多应用和服务的部署变得复杂同一台服务器上部署多个服务还要解决运行环境冲突的问题此外对于如大促这类需要动态扩缩容的场景需要水平扩展服务的性能就需要在新增的服务上准备运行环境部署服务等运维将变得十分困难。 第十三次演进引入容器化技术实现运行环境隔离与动态服务管理 目前最流行的容器化技术是Docker最流行的容器管理服务是Kubernetes(K8S)应用/服务可以打包为Docker镜像通过K8S来动态分发和部署镜像。Docker镜像可理解为一个能运行你的应用/服务的最小的操作系统里面放着应用/服务的运行代码运行环境根据实际的需要设置好。把整个“操作系统”打包为一个镜像后就可以分发到需要部署相关服务的机器上直接启动Docker镜像就可以把服务起起来使服务的部署和运维变得简单。 在大促的之前可以在现有的机器集群上划分出服务器来启动Docker镜像增强服务的性能大促过后就可以关闭镜像对机器上的其他服务不造成影响在第18节之前服务运行在新增机器上需要修改系统配置来适配服务这会导致机器上其他服务需要的运行环境被破坏。 架构瓶颈使用容器化技术后服务动态扩缩容问题得以解决但是机器还是需要公司自身来管理在非大促的时候还是需要闲置着大量的机器资源来应对大促机器自身成本和运维成本都极高资源利用率低。 第十四次演进以云平台承载系统 系统可部署到公有云上利用公有云的海量机器资源解决动态硬件资源的问题在大促的时间段里在云平台中临时申请更多的资源结合Docker和K8S来快速部署服务在大促结束后释放资源真正做到按需付费资源利用率大大提高同时大大降低了运维成本。 所谓的云平台就是把海量机器资源通过统一的资源管理抽象为一个资源整体在之上可按需动态申请硬件资源如CPU、内存、网络等并且之上提供通用的操作系统提供常用的技术组件如Hadoop技术栈MPP数据库等供用户使用甚至提供开发好的应用用户不需要关系应用内部使用了什么技术就能够解决需求如音视频转码服务、邮件服务、个人博客等。 在云平台中会涉及如下几个概念 1IaaS基础设施即服务。对应于上面所说的机器资源统一为资源整体可动态申请硬件资源的层面 2PaaS平台即服务。对应于上面所说的提供常用的技术组件方便系统的开发和维护 3SaaS软件即服务。对应于上面所说的提供开发好的应用或服务按功能或性能要求付费。 至此以上所提到的从高并发访问问题到服务的架构和系统实施的层面都有了各自的解决方案。但同时也应该意识到在上面的介绍中其实是有意忽略了诸如跨机房数据同步、分布式事务实现等等的实际问题这些问题以后有机会再拿出来单独讨论。
架构设计经验小结
1.架构的调整是否必须按照上述演变路径进行
不是的以上所说的架构演变顺序只是针对某个侧面进行单独的改进在实际场景中可能同一时间会有几个问题需要解决或者可能先达到瓶颈的是另外的方面这时候就应该按照实际问题实际解决。如在政府类的并发量可能不大但业务可能很丰富的场景高并发就不是重点解决的问题此时优先需要的可能会是丰富需求的解决方案。
2.对于将要实施的系统架构应该设计到什么程度
对于单次实施并且性能指标明确的系统架构设计到能够支持系统的性能指标要求就足够了但要留有扩展架构的接口以便不备之需。对于不断发展的系统如电商平台应设计到能满足下一阶段用户量和性能指标要求的程度并根据业务的增长不断的迭代升级架构以支持更高的并发和更丰富的业务。
3.服务端架构和大数据架构有什么区别
所谓的“大数据”其实是海量数据采集清洗转换、数据存储、数据分析、数据服务等场景解决方案的一个统称在每一个场景都包含了多种可选的技术如数据采集有Flume、Sqoop、Kettle等数据存储有分布式文件系统HDFS、FastDFSNoSQL数据库HBase、MongoDB等数据分析有Spark技术栈、机器学习算法等。 总的来说大数据架构就是根据业务的需求整合各种大数据组件组合而成的架构一般会提供分布式存储、分布式计算、多维分析、数据仓库、机器学习算法等能力。而服务端架构更多指的是应用组织层面的架构底层能力往往是由大数据架构来提供。
4.有没有一些架构设计的原则
N1设计系统中的每个组件都应做到没有单点故障回滚设计确保系统可以向前兼容在系统升级时应能有办法回滚版本禁用设计应该提供控制具体功能是否可用的配置在系统出现故障时能够快速下线功能监控设计在设计阶段就要考虑监控的手段多活数据中心设计若系统需要极高的高可用应考虑在多地实施数据中心进行多活至少在一个机房断电的情况下系统依然可用采用成熟的技术刚开发的或开源的技术往往存在很多隐藏的bug出了问题没有商业支持可能会是一个灾难资源隔离设计应避免单一业务占用全部资源架构应能水平扩展系统只有做到能水平扩展才能有效避免瓶颈问题非核心则购买非核心功能若需要占用大量的研发资源才能解决则考虑购买成熟的产品使用商用硬件商用硬件能有效降低硬件故障的机率快速迭代系统应该快速开发小功能模块尽快上线进行验证早日发现问题大大降低系统交付的风险无状态设计服务接口应该做成无状态的当前接口的访问不依赖于接口上次访问的状态。