当前位置: 首页 > news >正文

如何上传网站数据库懂装修公司怎么样

如何上传网站数据库,懂装修公司怎么样,wordpress 模板带数据,凌风wordpress高级文章目录 神经网络的回归例1 基于神经网络的回归(简单例子)1.1 导入包1.2 构造数据集#xff08;随机构造的#xff09;1.3 构造训练集和测试集1.4 构建神经网络模型1.5 采用训练数据来训练神经网络模型 实验1 基于神经网络的分类(鸢尾花数据集)1.1 导入包1.2 构造数据集1.3 … 文章目录 神经网络的回归例1 基于神经网络的回归(简单例子)1.1 导入包1.2 构造数据集随机构造的1.3 构造训练集和测试集1.4 构建神经网络模型1.5 采用训练数据来训练神经网络模型 实验1 基于神经网络的分类(鸢尾花数据集)1.1 导入包1.2 构造数据集1.3 构造训练集和测试集1.4 构建神经网络模型1.5 采用训练数据来训练神经网络模型 神经网络的回归 例1 基于神经网络的回归(简单例子) 1.1 导入包 import torchimport numpy as np from torch import nn from sklearn.model_selection import train_test_split1.2 构造数据集随机构造的 from torch.autograd import Variable batch_n100 hidden_layer100 input_data1000 output_data10xVariable(torch.randn(batch_n,input_data),requires_gradTrue) yVariable(torch.randn(batch_n,output_data),requires_gradTrue)1.3 构造训练集和测试集 x_train,x_test,y_train,y_testtrain_test_split(x,y,test_size0.2,random_state0)x_train.shape,x_test.shape,y_train.shape,y_test.shape(torch.Size([80, 1000]),torch.Size([20, 1000]),torch.Size([80, 10]),torch.Size([20, 10]))torch.Tensor(np.array([1,2]))tensor([1., 2.])y_testtensor([[-0.1810, 0.2906, 0.4490, 1.3190, -1.1832, -0.0035, 0.5440, -0.8954,0.7686, 1.3758],[ 1.1767, -0.6170, -0.7946, -1.2191, 0.5998, -0.8591, -2.7796, -0.7918,-0.1282, 0.2730],[ 1.8079, 0.9862, -1.7850, -0.4031, 1.5472, 0.1663, -0.5043, 1.2402,-2.2270, 1.9437],[-0.0478, 0.1177, -0.4014, 0.6531, -2.0040, 1.5664, 2.0697, -0.5635,-0.4687, 1.5910],[ 1.5076, 1.0444, -1.7943, 0.7268, 1.1636, 0.1772, -1.0183, -1.0916,0.5012, 2.0798],[ 0.7027, -0.0999, -0.0670, -0.1838, 0.6959, 1.5484, 0.1950, -0.5757,1.4192, -0.6865],[ 1.7699, -1.9956, 0.1742, -0.6788, -2.0619, 0.8384, 2.1277, -1.2390,-1.0382, 0.5834],[ 0.8416, 1.6485, -0.0215, 0.0048, -1.7932, 0.1007, -2.4015, 0.3087,-0.7603, 0.9714],[-0.6723, -1.3535, -0.8598, -0.4294, -1.6416, 0.3986, -0.3160, 0.9952,0.6939, -1.2953],[ 0.1403, 0.2171, -1.0277, -0.6372, 0.2468, 1.6663, 0.3363, 0.5068,-0.0259, -0.8080],[ 0.9330, 0.8476, -0.3819, 0.8394, 1.1713, -0.6932, -0.0453, -1.3850,0.6089, -0.7219],[-0.1061, -2.8115, -1.7533, -0.3561, 0.5066, 0.5846, 0.2225, 0.7907,0.6693, 0.1164],[ 1.4511, -0.7063, -0.2785, 1.1644, -0.4726, -0.9858, 0.1105, 2.6274,0.8037, 0.1488],[ 0.9054, -0.1386, 0.6521, -2.7186, -1.1272, -0.7584, -1.1367, -0.0416,-0.0663, 0.6517],[-0.9568, -0.0174, -0.8611, 0.5748, -0.9300, 1.1043, -1.6796, 0.9629,-1.1011, 0.6005],[ 0.9963, 0.5226, 0.5209, 1.0107, 0.6931, 1.6149, -0.3450, 0.5082,1.2774, -0.1767],[ 0.3884, -1.8515, -0.6365, -0.1225, 1.2765, -0.1700, 0.4384, 0.0291,0.4540, 0.7085],[ 0.9688, 1.4026, 1.1516, -0.1575, 0.6101, -0.5406, 1.9612, 0.1654,-0.8425, -0.0459],[-1.5699, 0.0486, -1.7415, 1.5327, 0.0225, -1.1386, -0.6188, 0.3958,0.5564, -1.1593],[ 0.5734, 0.8675, 0.0328, -0.2371, -0.5879, 0.7541, 0.5935, 0.9097,0.9884, 0.6365]], grad_fnIndexBackward0)1.4 构建神经网络模型 class Nerual_Network(nn.Module):def __init__(self):super().__init__()self.hidden1nn.Linear(input_data,hidden_layer)self.outputnn.Linear(hidden_layer,output_data)self.relunn.ReLU()self.softmaxnn.Softmax(dim1)def forward(self,x):xself.hidden1(x)xself.relu(x)xself.output(x)xself.softmax(x)return ximport torch.optim as optim modelNerual_Network() modelNerual_Network((hidden1): Linear(in_features1000, out_features100, biasTrue)(output): Linear(in_features100, out_features10, biasTrue)(relu): ReLU()(softmax): Softmax(dim1) )1.5 采用训练数据来训练神经网络模型 epochs1000 learnng_rate0.003 critiernn.MSELoss() optimizeroptim.Adam(model.parameters(),lrlearnng_rate)for i in range(epochs):outputsmodel(x_train)losscritier(outputs,y_train)print(Epoch:{},Loss:{:4f}.format(i,loss))optimizer.zero_grad()loss.backward(retain_graphTrue)optimizer.step()Epoch:0,Loss:0.948208 Epoch:1,Loss:0.896322 Epoch:2,Loss:0.855293 Epoch:3,Loss:0.819206 Epoch:4,Loss:0.790216 Epoch:5,Loss:0.769548 Epoch:6,Loss:0.755935 Epoch:7,Loss:0.747829 Epoch:8,Loss:0.743429 Epoch:9,Loss:0.741071 Epoch:10,Loss:0.739489 Epoch:11,Loss:0.738407 Epoch:12,Loss:0.737566 Epoch:13,Loss:0.736756 Epoch:14,Loss:0.736009 Epoch:15,Loss:0.735342 Epoch:16,Loss:0.734747 Epoch:17,Loss:0.734446 Epoch:18,Loss:0.734121 Epoch:19,Loss:0.733825 Epoch:20,Loss:0.733538 Epoch:21,Loss:0.733174 Epoch:22,Loss:0.732976 Epoch:23,Loss:0.732888 Epoch:24,Loss:0.732744 Epoch:25,Loss:0.732587 Epoch:26,Loss:0.732487 Epoch:27,Loss:0.732393 Epoch:28,Loss:0.732277 Epoch:29,Loss:0.732168 Epoch:30,Loss:0.732101 Epoch:31,Loss:0.732098 Epoch:32,Loss:0.731946 Epoch:33,Loss:0.731655 Epoch:34,Loss:0.731511 Epoch:35,Loss:0.731603 Epoch:36,Loss:0.731634 Epoch:37,Loss:0.731516 Epoch:38,Loss:0.731375 Epoch:39,Loss:0.731263 Epoch:40,Loss:0.731153 Epoch:41,Loss:0.731199 Epoch:42,Loss:0.731237 Epoch:43,Loss:0.731082 Epoch:44,Loss:0.730953 Epoch:45,Loss:0.730905 Epoch:46,Loss:0.730879 Epoch:47,Loss:0.730842 Epoch:48,Loss:0.730784 Epoch:49,Loss:0.730665 Epoch:50,Loss:0.730640 Epoch:51,Loss:0.730709 Epoch:52,Loss:0.730659 Epoch:53,Loss:0.730601 Epoch:54,Loss:0.730571 Epoch:55,Loss:0.730595 Epoch:56,Loss:0.730605 Epoch:57,Loss:0.730550 Epoch:58,Loss:0.730524 Epoch:59,Loss:0.730512 Epoch:60,Loss:0.730482 Epoch:61,Loss:0.730442 Epoch:62,Loss:0.730421 Epoch:63,Loss:0.730365 Epoch:64,Loss:0.730232 Epoch:65,Loss:0.730102 Epoch:66,Loss:0.730107 Epoch:67,Loss:0.730175 Epoch:68,Loss:0.730177 Epoch:69,Loss:0.730097 Epoch:70,Loss:0.730023 Epoch:71,Loss:0.730047 Epoch:72,Loss:0.730051 Epoch:73,Loss:0.729966 Epoch:74,Loss:0.729911 Epoch:75,Loss:0.729961 Epoch:76,Loss:0.729982 Epoch:77,Loss:0.729963 Epoch:78,Loss:0.729940 Epoch:79,Loss:0.729932 Epoch:80,Loss:0.729937 Epoch:81,Loss:0.729935 Epoch:82,Loss:0.729909 Epoch:83,Loss:0.729893 Epoch:84,Loss:0.729907 Epoch:85,Loss:0.729910 Epoch:86,Loss:0.729892 Epoch:87,Loss:0.729884 Epoch:88,Loss:0.729888 Epoch:89,Loss:0.729883 Epoch:90,Loss:0.729874 Epoch:91,Loss:0.729868 Epoch:92,Loss:0.729864 Epoch:93,Loss:0.729858 Epoch:94,Loss:0.729847 Epoch:95,Loss:0.729843 Epoch:96,Loss:0.729848 Epoch:97,Loss:0.729852 Epoch:98,Loss:0.729849 Epoch:99,Loss:0.729840 Epoch:100,Loss:0.729836 Epoch:101,Loss:0.729834 Epoch:102,Loss:0.729832 Epoch:103,Loss:0.729832 Epoch:104,Loss:0.729834 Epoch:105,Loss:0.729833 Epoch:106,Loss:0.729828 Epoch:107,Loss:0.729825 Epoch:108,Loss:0.729824 Epoch:109,Loss:0.729821 Epoch:110,Loss:0.729816 Epoch:111,Loss:0.729813 Epoch:112,Loss:0.729810 Epoch:113,Loss:0.729806 Epoch:114,Loss:0.729799 Epoch:115,Loss:0.729792 Epoch:116,Loss:0.729782 Epoch:117,Loss:0.729771 Epoch:118,Loss:0.729763 Epoch:119,Loss:0.729760 Epoch:120,Loss:0.729763 Epoch:121,Loss:0.729765 Epoch:122,Loss:0.729761 Epoch:123,Loss:0.729753 Epoch:124,Loss:0.729747 Epoch:125,Loss:0.729744 Epoch:126,Loss:0.729743 Epoch:127,Loss:0.729739 Epoch:128,Loss:0.729731 Epoch:129,Loss:0.729718 Epoch:130,Loss:0.729700 Epoch:131,Loss:0.729674 Epoch:132,Loss:0.729634 Epoch:133,Loss:0.729571 Epoch:134,Loss:0.729517 Epoch:135,Loss:0.729545 Epoch:136,Loss:0.729541 Epoch:137,Loss:0.729501 Epoch:138,Loss:0.729543 Epoch:139,Loss:0.729531 Epoch:140,Loss:0.729507 Epoch:141,Loss:0.729527 Epoch:142,Loss:0.729508 Epoch:143,Loss:0.729499 Epoch:144,Loss:0.729505 Epoch:145,Loss:0.729486 Epoch:146,Loss:0.729480 Epoch:147,Loss:0.729476 Epoch:148,Loss:0.729455 Epoch:149,Loss:0.729445 Epoch:150,Loss:0.729428 Epoch:151,Loss:0.729400 Epoch:152,Loss:0.729373 Epoch:153,Loss:0.729345 Epoch:154,Loss:0.729355 Epoch:155,Loss:0.729364 Epoch:156,Loss:0.729335 Epoch:157,Loss:0.729335 Epoch:158,Loss:0.729328 Epoch:159,Loss:0.729310 Epoch:160,Loss:0.729303 Epoch:161,Loss:0.729285 Epoch:162,Loss:0.729242 Epoch:163,Loss:0.729181 Epoch:164,Loss:0.729270 Epoch:165,Loss:0.729187 Epoch:166,Loss:0.729191 Epoch:167,Loss:0.729215 Epoch:168,Loss:0.729211 Epoch:169,Loss:0.729182 Epoch:170,Loss:0.729173 Epoch:171,Loss:0.729202 Epoch:172,Loss:0.729167 Epoch:173,Loss:0.729181 Epoch:174,Loss:0.729184 Epoch:175,Loss:0.729166 Epoch:176,Loss:0.729160 Epoch:177,Loss:0.729178 Epoch:178,Loss:0.729157 Epoch:179,Loss:0.729164 Epoch:180,Loss:0.729166 Epoch:181,Loss:0.729156 Epoch:182,Loss:0.729158 Epoch:183,Loss:0.729161 Epoch:184,Loss:0.729151 Epoch:185,Loss:0.729155 Epoch:186,Loss:0.729156 Epoch:187,Loss:0.729150 Epoch:188,Loss:0.729153 Epoch:189,Loss:0.729153 Epoch:190,Loss:0.729149 Epoch:191,Loss:0.729151 Epoch:192,Loss:0.729149 Epoch:193,Loss:0.729147 Epoch:194,Loss:0.729149 Epoch:195,Loss:0.729147 Epoch:196,Loss:0.729147 Epoch:197,Loss:0.729147 Epoch:198,Loss:0.729146 Epoch:199,Loss:0.729145 Epoch:200,Loss:0.729145 Epoch:201,Loss:0.729144 Epoch:202,Loss:0.729145 Epoch:203,Loss:0.729144 Epoch:204,Loss:0.729144 Epoch:205,Loss:0.729143 Epoch:206,Loss:0.729143 Epoch:207,Loss:0.729142 Epoch:208,Loss:0.729142 Epoch:209,Loss:0.729142 Epoch:210,Loss:0.729141 Epoch:211,Loss:0.729141 Epoch:212,Loss:0.729140 Epoch:213,Loss:0.729140 Epoch:214,Loss:0.729139 Epoch:215,Loss:0.729139 Epoch:216,Loss:0.729138 Epoch:217,Loss:0.729138 Epoch:218,Loss:0.729137 Epoch:219,Loss:0.729137 Epoch:220,Loss:0.729136 Epoch:221,Loss:0.729135 Epoch:222,Loss:0.729134 Epoch:223,Loss:0.729134 Epoch:224,Loss:0.729133 Epoch:225,Loss:0.729132 Epoch:226,Loss:0.729131 Epoch:227,Loss:0.729131 Epoch:228,Loss:0.729130 Epoch:229,Loss:0.729129 Epoch:230,Loss:0.729129 Epoch:231,Loss:0.729128 Epoch:232,Loss:0.729127 Epoch:233,Loss:0.729126 Epoch:234,Loss:0.729125 Epoch:235,Loss:0.729124 Epoch:236,Loss:0.729123 Epoch:237,Loss:0.729121 Epoch:238,Loss:0.729119 Epoch:239,Loss:0.729116 Epoch:240,Loss:0.729112 Epoch:241,Loss:0.729106 Epoch:242,Loss:0.729095 Epoch:243,Loss:0.729075 Epoch:244,Loss:0.729035 Epoch:245,Loss:0.728994 Epoch:246,Loss:0.729103 Epoch:247,Loss:0.729000 Epoch:248,Loss:0.729026 Epoch:249,Loss:0.729047 Epoch:250,Loss:0.729044 Epoch:251,Loss:0.729022 Epoch:252,Loss:0.728987 Epoch:253,Loss:0.729031 Epoch:254,Loss:0.728992 Epoch:255,Loss:0.728995 Epoch:256,Loss:0.729006 Epoch:257,Loss:0.728994 Epoch:258,Loss:0.728984 Epoch:259,Loss:0.728999 Epoch:260,Loss:0.728980 Epoch:261,Loss:0.728992 Epoch:262,Loss:0.728987 Epoch:263,Loss:0.728978 Epoch:264,Loss:0.728986 Epoch:265,Loss:0.728979 Epoch:266,Loss:0.728976 Epoch:267,Loss:0.728983 Epoch:268,Loss:0.728976 Epoch:269,Loss:0.728975 Epoch:270,Loss:0.728978 Epoch:271,Loss:0.728973 Epoch:272,Loss:0.728976 Epoch:273,Loss:0.728974 Epoch:274,Loss:0.728972 Epoch:275,Loss:0.728973 Epoch:276,Loss:0.728970 Epoch:277,Loss:0.728972 Epoch:278,Loss:0.728970 Epoch:279,Loss:0.728969 Epoch:280,Loss:0.728970 Epoch:281,Loss:0.728968 Epoch:282,Loss:0.728967 Epoch:283,Loss:0.728967 Epoch:284,Loss:0.728965 Epoch:285,Loss:0.728964 Epoch:286,Loss:0.728962 Epoch:287,Loss:0.728961 Epoch:288,Loss:0.728958 Epoch:289,Loss:0.728954 Epoch:290,Loss:0.728950 Epoch:291,Loss:0.728942 Epoch:292,Loss:0.728928 Epoch:293,Loss:0.728899 Epoch:294,Loss:0.728823 Epoch:295,Loss:0.728630 Epoch:296,Loss:0.728751 Epoch:297,Loss:0.728786 Epoch:298,Loss:0.728595 Epoch:299,Loss:0.728683 Epoch:300,Loss:0.728725 Epoch:301,Loss:0.728664 Epoch:302,Loss:0.728570 Epoch:303,Loss:0.728632 Epoch:304,Loss:0.728585 Epoch:305,Loss:0.728485 Epoch:306,Loss:0.728588 Epoch:307,Loss:0.728561 Epoch:308,Loss:0.728491 Epoch:309,Loss:0.728501 Epoch:310,Loss:0.728533 Epoch:311,Loss:0.728463 Epoch:312,Loss:0.728422 Epoch:313,Loss:0.728431 Epoch:314,Loss:0.728469 Epoch:315,Loss:0.728421 Epoch:316,Loss:0.728418 Epoch:317,Loss:0.728427 Epoch:318,Loss:0.728412 Epoch:319,Loss:0.728418 Epoch:320,Loss:0.728410 Epoch:321,Loss:0.728394 Epoch:322,Loss:0.728381 Epoch:323,Loss:0.728382 Epoch:324,Loss:0.728369 Epoch:325,Loss:0.728349 Epoch:326,Loss:0.728347 Epoch:327,Loss:0.728362 Epoch:328,Loss:0.728340 Epoch:329,Loss:0.728344 Epoch:330,Loss:0.728345 Epoch:331,Loss:0.728342 Epoch:332,Loss:0.728344 Epoch:333,Loss:0.728341 Epoch:334,Loss:0.728331 Epoch:335,Loss:0.728325 Epoch:336,Loss:0.728333 Epoch:337,Loss:0.728325 Epoch:338,Loss:0.728315 Epoch:339,Loss:0.728312 Epoch:340,Loss:0.728302 Epoch:341,Loss:0.728283 Epoch:342,Loss:0.728251 Epoch:343,Loss:0.728215 Epoch:344,Loss:0.728237 Epoch:345,Loss:0.728224 Epoch:346,Loss:0.728241 Epoch:347,Loss:0.728240 Epoch:348,Loss:0.728236 Epoch:349,Loss:0.728247 Epoch:350,Loss:0.728234 Epoch:351,Loss:0.728240 Epoch:352,Loss:0.728227 Epoch:353,Loss:0.728231 Epoch:354,Loss:0.728216 Epoch:355,Loss:0.728212 Epoch:356,Loss:0.728203 Epoch:357,Loss:0.728202 Epoch:358,Loss:0.728209 Epoch:359,Loss:0.728204 Epoch:360,Loss:0.728200 Epoch:361,Loss:0.728195 Epoch:362,Loss:0.728183 Epoch:363,Loss:0.728181 Epoch:364,Loss:0.728175 Epoch:365,Loss:0.728174 Epoch:366,Loss:0.728175 Epoch:367,Loss:0.728168 Epoch:368,Loss:0.728171 Epoch:369,Loss:0.728168 Epoch:370,Loss:0.728167 Epoch:371,Loss:0.728168 Epoch:372,Loss:0.728167 Epoch:373,Loss:0.728169 Epoch:374,Loss:0.728166 Epoch:375,Loss:0.728165 Epoch:376,Loss:0.728165 Epoch:377,Loss:0.728163 Epoch:378,Loss:0.728163 Epoch:379,Loss:0.728162 Epoch:380,Loss:0.728160 Epoch:381,Loss:0.728159 Epoch:382,Loss:0.728158 Epoch:383,Loss:0.728158 Epoch:384,Loss:0.728158 Epoch:385,Loss:0.728159 Epoch:386,Loss:0.728159 Epoch:387,Loss:0.728158 Epoch:388,Loss:0.728157 Epoch:389,Loss:0.728156 Epoch:390,Loss:0.728156 Epoch:391,Loss:0.728156 Epoch:392,Loss:0.728156 Epoch:393,Loss:0.728156 Epoch:394,Loss:0.728156 Epoch:395,Loss:0.728155 Epoch:396,Loss:0.728155 Epoch:397,Loss:0.728154 Epoch:398,Loss:0.728154 Epoch:399,Loss:0.728153 Epoch:400,Loss:0.728153 Epoch:401,Loss:0.728153 Epoch:402,Loss:0.728153 Epoch:403,Loss:0.728153 Epoch:404,Loss:0.728153 Epoch:405,Loss:0.728153 Epoch:406,Loss:0.728152 Epoch:407,Loss:0.728152 Epoch:408,Loss:0.728152 Epoch:409,Loss:0.728152 Epoch:410,Loss:0.728153 Epoch:411,Loss:0.728153 Epoch:412,Loss:0.728152 Epoch:413,Loss:0.728152 Epoch:414,Loss:0.728152 Epoch:415,Loss:0.728152 Epoch:416,Loss:0.728152 Epoch:417,Loss:0.728152 Epoch:418,Loss:0.728152 Epoch:419,Loss:0.728152 Epoch:420,Loss:0.728152 Epoch:421,Loss:0.728152 Epoch:422,Loss:0.728152 Epoch:423,Loss:0.728152 Epoch:424,Loss:0.728151 Epoch:425,Loss:0.728151 Epoch:426,Loss:0.728151 Epoch:427,Loss:0.728151 Epoch:428,Loss:0.728151 Epoch:429,Loss:0.728151 Epoch:430,Loss:0.728151 Epoch:431,Loss:0.728151 Epoch:432,Loss:0.728151 Epoch:433,Loss:0.728151 Epoch:434,Loss:0.728151 Epoch:435,Loss:0.728152 Epoch:436,Loss:0.728152 Epoch:437,Loss:0.728153 Epoch:438,Loss:0.728154 Epoch:439,Loss:0.728158 Epoch:440,Loss:0.728161 Epoch:441,Loss:0.728168 Epoch:442,Loss:0.728167 Epoch:443,Loss:0.728169 Epoch:444,Loss:0.728161 Epoch:445,Loss:0.728157 Epoch:446,Loss:0.728152 Epoch:447,Loss:0.728151 Epoch:448,Loss:0.728151 Epoch:449,Loss:0.728153 Epoch:450,Loss:0.728155 Epoch:451,Loss:0.728156 Epoch:452,Loss:0.728158 Epoch:453,Loss:0.728156 Epoch:454,Loss:0.728155 Epoch:455,Loss:0.728153 Epoch:456,Loss:0.728152 Epoch:457,Loss:0.728151 Epoch:458,Loss:0.728151 Epoch:459,Loss:0.728152 Epoch:460,Loss:0.728152 Epoch:461,Loss:0.728153 Epoch:462,Loss:0.728153 Epoch:463,Loss:0.728153 Epoch:464,Loss:0.728152 Epoch:465,Loss:0.728152 Epoch:466,Loss:0.728151 Epoch:467,Loss:0.728150 Epoch:468,Loss:0.728150 Epoch:469,Loss:0.728150 Epoch:470,Loss:0.728150 Epoch:471,Loss:0.728150 Epoch:472,Loss:0.728150 Epoch:473,Loss:0.728150 Epoch:474,Loss:0.728150 Epoch:475,Loss:0.728151 Epoch:476,Loss:0.728151 Epoch:477,Loss:0.728152 Epoch:478,Loss:0.728153 Epoch:479,Loss:0.728154 Epoch:480,Loss:0.728155 Epoch:481,Loss:0.728157 Epoch:482,Loss:0.728157 Epoch:483,Loss:0.728159 Epoch:484,Loss:0.728158 Epoch:485,Loss:0.728159 Epoch:486,Loss:0.728157 Epoch:487,Loss:0.728157 Epoch:488,Loss:0.728155 Epoch:489,Loss:0.728154 Epoch:490,Loss:0.728152 Epoch:491,Loss:0.728152 Epoch:492,Loss:0.728152 Epoch:493,Loss:0.728155 Epoch:494,Loss:0.728160 Epoch:495,Loss:0.728176 Epoch:496,Loss:0.728173 Epoch:497,Loss:0.728173 Epoch:498,Loss:0.728159 Epoch:499,Loss:0.728152 Epoch:500,Loss:0.728150 Epoch:501,Loss:0.728154 Epoch:502,Loss:0.728158 Epoch:503,Loss:0.728160 Epoch:504,Loss:0.728159 Epoch:505,Loss:0.728151 Epoch:506,Loss:0.728142 Epoch:507,Loss:0.728133 Epoch:508,Loss:0.728125 Epoch:509,Loss:0.728117 Epoch:510,Loss:0.728114 Epoch:511,Loss:0.728127 Epoch:512,Loss:0.728130 Epoch:513,Loss:0.728116 Epoch:514,Loss:0.728111 Epoch:515,Loss:0.728115 Epoch:516,Loss:0.728118 Epoch:517,Loss:0.728120 Epoch:518,Loss:0.728119 Epoch:519,Loss:0.728117 Epoch:520,Loss:0.728114 Epoch:521,Loss:0.728115 Epoch:522,Loss:0.728118 Epoch:523,Loss:0.728117 Epoch:524,Loss:0.728114 Epoch:525,Loss:0.728116 Epoch:526,Loss:0.728119 Epoch:527,Loss:0.728122 Epoch:528,Loss:0.728121 Epoch:529,Loss:0.728120 Epoch:530,Loss:0.728118 Epoch:531,Loss:0.728119 Epoch:532,Loss:0.728117 Epoch:533,Loss:0.728115 Epoch:534,Loss:0.728112 Epoch:535,Loss:0.728111 Epoch:536,Loss:0.728110 Epoch:537,Loss:0.728109 Epoch:538,Loss:0.728108 Epoch:539,Loss:0.728107 Epoch:540,Loss:0.728106 Epoch:541,Loss:0.728106 Epoch:542,Loss:0.728106 Epoch:543,Loss:0.728105 Epoch:544,Loss:0.728104 Epoch:545,Loss:0.728104 Epoch:546,Loss:0.728103 Epoch:547,Loss:0.728102 Epoch:548,Loss:0.728101 Epoch:549,Loss:0.728099 Epoch:550,Loss:0.728097 Epoch:551,Loss:0.728093 Epoch:552,Loss:0.728085 Epoch:553,Loss:0.728074 Epoch:554,Loss:0.728062 Epoch:555,Loss:0.728072 Epoch:556,Loss:0.728080 Epoch:557,Loss:0.728063 Epoch:558,Loss:0.728067 Epoch:559,Loss:0.728073 Epoch:560,Loss:0.728076 Epoch:561,Loss:0.728074 Epoch:562,Loss:0.728070 Epoch:563,Loss:0.728068 Epoch:564,Loss:0.728076 Epoch:565,Loss:0.728081 Epoch:566,Loss:0.728080 Epoch:567,Loss:0.728084 Epoch:568,Loss:0.728094 Epoch:569,Loss:0.728093 Epoch:570,Loss:0.728093 Epoch:571,Loss:0.728088 Epoch:572,Loss:0.728092 Epoch:573,Loss:0.728093 Epoch:574,Loss:0.728096 Epoch:575,Loss:0.728087 Epoch:576,Loss:0.728085 Epoch:577,Loss:0.728076 Epoch:578,Loss:0.728071 Epoch:579,Loss:0.728065 Epoch:580,Loss:0.728064 Epoch:581,Loss:0.728064 Epoch:582,Loss:0.728064 Epoch:583,Loss:0.728064 Epoch:584,Loss:0.728065 Epoch:585,Loss:0.728067 Epoch:586,Loss:0.728067 Epoch:587,Loss:0.728069 Epoch:588,Loss:0.728070 Epoch:589,Loss:0.728073 Epoch:590,Loss:0.728073 Epoch:591,Loss:0.728076 Epoch:592,Loss:0.728075 Epoch:593,Loss:0.728076 Epoch:594,Loss:0.728074 Epoch:595,Loss:0.728073 Epoch:596,Loss:0.728070 Epoch:597,Loss:0.728070 Epoch:598,Loss:0.728068 Epoch:599,Loss:0.728067 Epoch:600,Loss:0.728067 Epoch:601,Loss:0.728068 Epoch:602,Loss:0.728069 Epoch:603,Loss:0.728070 Epoch:604,Loss:0.728070 Epoch:605,Loss:0.728071 Epoch:606,Loss:0.728071 Epoch:607,Loss:0.728071 Epoch:608,Loss:0.728070 Epoch:609,Loss:0.728070 Epoch:610,Loss:0.728068 Epoch:611,Loss:0.728065 Epoch:612,Loss:0.728059 Epoch:613,Loss:0.728049 Epoch:614,Loss:0.728026 Epoch:615,Loss:0.727994 Epoch:616,Loss:0.728072 Epoch:617,Loss:0.728004 Epoch:618,Loss:0.728045 Epoch:619,Loss:0.728061 Epoch:620,Loss:0.728064 Epoch:621,Loss:0.728058 Epoch:622,Loss:0.728051 Epoch:623,Loss:0.728018 Epoch:624,Loss:0.728035 Epoch:625,Loss:0.728020 Epoch:626,Loss:0.728013 Epoch:627,Loss:0.728013 Epoch:628,Loss:0.728008 Epoch:629,Loss:0.727999 Epoch:630,Loss:0.727998 Epoch:631,Loss:0.727995 Epoch:632,Loss:0.727986 Epoch:633,Loss:0.727996 Epoch:634,Loss:0.727997 Epoch:635,Loss:0.727989 Epoch:636,Loss:0.727994 Epoch:637,Loss:0.727995 Epoch:638,Loss:0.727990 Epoch:639,Loss:0.727997 Epoch:640,Loss:0.727997 Epoch:641,Loss:0.727991 Epoch:642,Loss:0.727994 Epoch:643,Loss:0.727990 Epoch:644,Loss:0.727988 Epoch:645,Loss:0.727991 Epoch:646,Loss:0.727987 Epoch:647,Loss:0.727985 Epoch:648,Loss:0.727986 Epoch:649,Loss:0.727983 Epoch:650,Loss:0.727982 Epoch:651,Loss:0.727982 Epoch:652,Loss:0.727981 Epoch:653,Loss:0.727980 Epoch:654,Loss:0.727980 Epoch:655,Loss:0.727978 Epoch:656,Loss:0.727979 Epoch:657,Loss:0.727979 Epoch:658,Loss:0.727979 Epoch:659,Loss:0.727981 Epoch:660,Loss:0.727983 Epoch:661,Loss:0.727985 Epoch:662,Loss:0.727988 Epoch:663,Loss:0.727992 Epoch:664,Loss:0.727995 Epoch:665,Loss:0.728004 Epoch:666,Loss:0.728005 Epoch:667,Loss:0.728013 Epoch:668,Loss:0.728009 Epoch:669,Loss:0.728011 Epoch:670,Loss:0.728003 Epoch:671,Loss:0.728001 Epoch:672,Loss:0.727998 Epoch:673,Loss:0.727997 Epoch:674,Loss:0.727998 Epoch:675,Loss:0.728001 Epoch:676,Loss:0.728009 Epoch:677,Loss:0.728015 Epoch:678,Loss:0.728027 Epoch:679,Loss:0.728025 Epoch:680,Loss:0.728023 Epoch:681,Loss:0.728011 Epoch:682,Loss:0.728002 Epoch:683,Loss:0.727991 Epoch:684,Loss:0.727984 Epoch:685,Loss:0.727980 Epoch:686,Loss:0.727978 Epoch:687,Loss:0.727978 Epoch:688,Loss:0.727979 Epoch:689,Loss:0.727981 Epoch:690,Loss:0.727982 Epoch:691,Loss:0.727984 Epoch:692,Loss:0.727986 Epoch:693,Loss:0.727987 Epoch:694,Loss:0.727988 Epoch:695,Loss:0.727989 Epoch:696,Loss:0.727989 Epoch:697,Loss:0.727989 Epoch:698,Loss:0.727988 Epoch:699,Loss:0.727987 Epoch:700,Loss:0.727986 Epoch:701,Loss:0.727985 Epoch:702,Loss:0.727983 Epoch:703,Loss:0.727982 Epoch:704,Loss:0.727980 Epoch:705,Loss:0.727979 Epoch:706,Loss:0.727978 Epoch:707,Loss:0.727977 Epoch:708,Loss:0.727977 Epoch:709,Loss:0.727977 Epoch:710,Loss:0.727978 Epoch:711,Loss:0.727979 Epoch:712,Loss:0.727980 Epoch:713,Loss:0.727982 Epoch:714,Loss:0.727985 Epoch:715,Loss:0.727986 Epoch:716,Loss:0.727989 Epoch:717,Loss:0.727990 Epoch:718,Loss:0.727994 Epoch:719,Loss:0.727993 Epoch:720,Loss:0.727995 Epoch:721,Loss:0.727992 Epoch:722,Loss:0.727991 Epoch:723,Loss:0.727987 Epoch:724,Loss:0.727986 Epoch:725,Loss:0.727984 Epoch:726,Loss:0.727984 Epoch:727,Loss:0.727984 Epoch:728,Loss:0.727985 Epoch:729,Loss:0.727987 Epoch:730,Loss:0.727988 Epoch:731,Loss:0.727991 Epoch:732,Loss:0.727993 Epoch:733,Loss:0.727995 Epoch:734,Loss:0.727998 Epoch:735,Loss:0.728000 Epoch:736,Loss:0.728001 Epoch:737,Loss:0.728001 Epoch:738,Loss:0.728000 Epoch:739,Loss:0.727997 Epoch:740,Loss:0.727994 Epoch:741,Loss:0.727990 Epoch:742,Loss:0.727986 Epoch:743,Loss:0.727983 Epoch:744,Loss:0.727980 Epoch:745,Loss:0.727978 Epoch:746,Loss:0.727976 Epoch:747,Loss:0.727975 Epoch:748,Loss:0.727974 Epoch:749,Loss:0.727973 Epoch:750,Loss:0.727973 Epoch:751,Loss:0.727974 Epoch:752,Loss:0.727974 Epoch:753,Loss:0.727975 Epoch:754,Loss:0.727976 Epoch:755,Loss:0.727977 Epoch:756,Loss:0.727978 Epoch:757,Loss:0.727979 Epoch:758,Loss:0.727980 Epoch:759,Loss:0.727982 Epoch:760,Loss:0.727985 Epoch:761,Loss:0.727988 Epoch:762,Loss:0.727990 Epoch:763,Loss:0.727994 Epoch:764,Loss:0.727996 Epoch:765,Loss:0.727999 Epoch:766,Loss:0.728003 Epoch:767,Loss:0.728006 Epoch:768,Loss:0.728010 Epoch:769,Loss:0.728012 Epoch:770,Loss:0.728014 Epoch:771,Loss:0.728012 Epoch:772,Loss:0.728011 Epoch:773,Loss:0.728006 Epoch:774,Loss:0.728004 Epoch:775,Loss:0.727998 Epoch:776,Loss:0.727997 Epoch:777,Loss:0.727992 Epoch:778,Loss:0.727992 Epoch:779,Loss:0.727990 Epoch:780,Loss:0.727992 Epoch:781,Loss:0.727992 Epoch:782,Loss:0.727995 Epoch:783,Loss:0.727996 Epoch:784,Loss:0.727999 Epoch:785,Loss:0.727998 Epoch:786,Loss:0.727997 Epoch:787,Loss:0.727994 Epoch:788,Loss:0.727991 Epoch:789,Loss:0.727986 Epoch:790,Loss:0.727983 Epoch:791,Loss:0.727979 Epoch:792,Loss:0.727977 Epoch:793,Loss:0.727975 Epoch:794,Loss:0.727974 Epoch:795,Loss:0.727974 Epoch:796,Loss:0.727974 Epoch:797,Loss:0.727974 Epoch:798,Loss:0.727975 Epoch:799,Loss:0.727976 Epoch:800,Loss:0.727977 Epoch:801,Loss:0.727978 Epoch:802,Loss:0.727979 Epoch:803,Loss:0.727980 Epoch:804,Loss:0.727981 Epoch:805,Loss:0.727982 Epoch:806,Loss:0.727983 Epoch:807,Loss:0.727985 Epoch:808,Loss:0.727987 Epoch:809,Loss:0.727988 Epoch:810,Loss:0.727991 Epoch:811,Loss:0.727993 Epoch:812,Loss:0.727996 Epoch:813,Loss:0.727998 Epoch:814,Loss:0.728001 Epoch:815,Loss:0.728002 Epoch:816,Loss:0.728004 Epoch:817,Loss:0.728002 Epoch:818,Loss:0.728001 Epoch:819,Loss:0.727997 Epoch:820,Loss:0.727995 Epoch:821,Loss:0.727991 Epoch:822,Loss:0.727989 Epoch:823,Loss:0.727987 Epoch:824,Loss:0.727988 Epoch:825,Loss:0.727988 Epoch:826,Loss:0.727993 Epoch:827,Loss:0.727994 Epoch:828,Loss:0.728000 Epoch:829,Loss:0.727999 Epoch:830,Loss:0.728003 Epoch:831,Loss:0.728001 Epoch:832,Loss:0.728002 Epoch:833,Loss:0.728000 Epoch:834,Loss:0.728000 Epoch:835,Loss:0.727996 Epoch:836,Loss:0.727994 Epoch:837,Loss:0.727988 Epoch:838,Loss:0.727984 Epoch:839,Loss:0.727979 Epoch:840,Loss:0.727974 Epoch:841,Loss:0.727969 Epoch:842,Loss:0.727967 Epoch:843,Loss:0.727967 Epoch:844,Loss:0.727969 Epoch:845,Loss:0.727971 Epoch:846,Loss:0.727973 Epoch:847,Loss:0.727973 Epoch:848,Loss:0.727973 Epoch:849,Loss:0.727974 Epoch:850,Loss:0.727975 Epoch:851,Loss:0.727975 Epoch:852,Loss:0.727975 Epoch:853,Loss:0.727975 Epoch:854,Loss:0.727974 Epoch:855,Loss:0.727973 Epoch:856,Loss:0.727972 Epoch:857,Loss:0.727972 Epoch:858,Loss:0.727972 Epoch:859,Loss:0.727973 Epoch:860,Loss:0.727975 Epoch:861,Loss:0.727977 Epoch:862,Loss:0.727979 Epoch:863,Loss:0.727981 Epoch:864,Loss:0.727984 Epoch:865,Loss:0.727985 Epoch:866,Loss:0.727988 Epoch:867,Loss:0.727989 Epoch:868,Loss:0.727991 Epoch:869,Loss:0.727994 Epoch:870,Loss:0.727997 Epoch:871,Loss:0.728004 Epoch:872,Loss:0.728004 Epoch:873,Loss:0.728011 Epoch:874,Loss:0.728003 Epoch:875,Loss:0.728000 Epoch:876,Loss:0.727988 Epoch:877,Loss:0.727983 Epoch:878,Loss:0.727978 Epoch:879,Loss:0.727980 Epoch:880,Loss:0.727976 Epoch:881,Loss:0.727973 Epoch:882,Loss:0.727965 Epoch:883,Loss:0.727958 Epoch:884,Loss:0.727957 Epoch:885,Loss:0.727967 Epoch:886,Loss:0.727960 Epoch:887,Loss:0.727967 Epoch:888,Loss:0.727977 Epoch:889,Loss:0.727987 Epoch:890,Loss:0.727992 Epoch:891,Loss:0.727996 Epoch:892,Loss:0.727995 Epoch:893,Loss:0.727995 Epoch:894,Loss:0.727992 Epoch:895,Loss:0.727986 Epoch:896,Loss:0.727973 Epoch:897,Loss:0.727966 Epoch:898,Loss:0.727960 Epoch:899,Loss:0.727956 Epoch:900,Loss:0.727953 Epoch:901,Loss:0.727951 Epoch:902,Loss:0.727951 Epoch:903,Loss:0.727954 Epoch:904,Loss:0.727955 Epoch:905,Loss:0.727955 Epoch:906,Loss:0.727954 Epoch:907,Loss:0.727952 Epoch:908,Loss:0.727950 Epoch:909,Loss:0.727948 Epoch:910,Loss:0.727945 Epoch:911,Loss:0.727944 Epoch:912,Loss:0.727945 Epoch:913,Loss:0.727945 Epoch:914,Loss:0.727946 Epoch:915,Loss:0.727947 Epoch:916,Loss:0.727949 Epoch:917,Loss:0.727949 Epoch:918,Loss:0.727949 Epoch:919,Loss:0.727949 Epoch:920,Loss:0.727949 Epoch:921,Loss:0.727949 Epoch:922,Loss:0.727949 Epoch:923,Loss:0.727950 Epoch:924,Loss:0.727952 Epoch:925,Loss:0.727952 Epoch:926,Loss:0.727955 Epoch:927,Loss:0.727956 Epoch:928,Loss:0.727960 Epoch:929,Loss:0.727961 Epoch:930,Loss:0.727965 Epoch:931,Loss:0.727963 Epoch:932,Loss:0.727965 Epoch:933,Loss:0.727962 Epoch:934,Loss:0.727963 Epoch:935,Loss:0.727961 Epoch:936,Loss:0.727962 Epoch:937,Loss:0.727962 Epoch:938,Loss:0.727964 Epoch:939,Loss:0.727966 Epoch:940,Loss:0.727968 Epoch:941,Loss:0.727969 Epoch:942,Loss:0.727969 Epoch:943,Loss:0.727967 Epoch:944,Loss:0.727965 Epoch:945,Loss:0.727962 Epoch:946,Loss:0.727960 Epoch:947,Loss:0.727959 Epoch:948,Loss:0.727960 Epoch:949,Loss:0.727962 Epoch:950,Loss:0.727965 Epoch:951,Loss:0.727969 Epoch:952,Loss:0.727972 Epoch:953,Loss:0.727974 Epoch:954,Loss:0.727974 Epoch:955,Loss:0.727973 Epoch:956,Loss:0.727969 Epoch:957,Loss:0.727964 Epoch:958,Loss:0.727958 Epoch:959,Loss:0.727952 Epoch:960,Loss:0.727947 Epoch:961,Loss:0.727945 Epoch:962,Loss:0.727943 Epoch:963,Loss:0.727943 Epoch:964,Loss:0.727944 Epoch:965,Loss:0.727946 Epoch:966,Loss:0.727947 Epoch:967,Loss:0.727950 Epoch:968,Loss:0.727952 Epoch:969,Loss:0.727954 Epoch:970,Loss:0.727954 Epoch:971,Loss:0.727956 Epoch:972,Loss:0.727956 Epoch:973,Loss:0.727957 Epoch:974,Loss:0.727956 Epoch:975,Loss:0.727958 Epoch:976,Loss:0.727958 Epoch:977,Loss:0.727962 Epoch:978,Loss:0.727962 Epoch:979,Loss:0.727968 Epoch:980,Loss:0.727968 Epoch:981,Loss:0.727973 Epoch:982,Loss:0.727968 Epoch:983,Loss:0.727967 Epoch:984,Loss:0.727960 Epoch:985,Loss:0.727957 Epoch:986,Loss:0.727953 Epoch:987,Loss:0.727951 Epoch:988,Loss:0.727950 Epoch:989,Loss:0.727950 Epoch:990,Loss:0.727950 Epoch:991,Loss:0.727951 Epoch:992,Loss:0.727952 Epoch:993,Loss:0.727953 Epoch:994,Loss:0.727955 Epoch:995,Loss:0.727956 Epoch:996,Loss:0.727957 Epoch:997,Loss:0.727957 Epoch:998,Loss:0.727958 Epoch:999,Loss:0.727956losscritier(model(x_test),y_test) losstensor(1.0953, grad_fnMseLossBackward0)实验1 基于神经网络的分类(鸢尾花数据集) 1 数据用鸢尾花数据集所有样本的四个特征三个类别 2 输出标签one hot vector 3 构建模型时输出端映射到0,1之间 4 修改损失函数为交叉熵函数 1.1 导入包 import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader from sklearn.datasets import load_iris from sklearn.preprocessing import OneHotEncoder from sklearn.model_selection import train_test_split1.2 构造数据集 irisload_iris() X,yiris.data,iris.targetone_hot_vectorOneHotEncoder(sparseFalse) yone_hot_vector.fit_transform(y.reshape(-1,1))1.3 构造训练集和测试集 X_train,X_test,y_train,y_testtrain_test_split(X,y,test_size0.2)X_train torch.Tensor(X_train) X_test torch.Tensor(X_test) y_train torch.Tensor(y_train) y_test torch.Tensor(y_test)X_train.shape,X_test.shape,y_train.shape,y_test.shape(torch.Size([120, 4]),torch.Size([30, 4]),torch.Size([120, 3]),torch.Size([30, 3]))1.4 构建神经网络模型 class Nerual_Network(nn.Module):def __init__(self):super().__init__()self.outputnn.Linear(X_train.shape[1],y_train.shape[1])self.sigmoidnn.Sigmoid()self.softmaxnn.Softmax(dim1)def forward(self,x):xself.output(x)xself.softmax(x)xself.sigmoid(x)return xmodelNerual_Network()modelNerual_Network((output): Linear(in_features4, out_features3, biasTrue)(sigmoid): Sigmoid()(softmax): Softmax(dim1) )1.5 采用训练数据来训练神经网络模型 epochs1000 learnng_rate0.003 critiernn.BCELoss() optimizeroptim.Adam(model.parameters(),lrlearnng_rate)for i in range(epochs):outputsmodel(X_train)losscritier(outputs,y_train)print(Epoch:{},Loss:{:4f}.format(i,loss))optimizer.zero_grad()loss.backward(retain_graphTrue)optimizer.step()Epoch:0,Loss:0.788641 Epoch:1,Loss:0.787205 Epoch:2,Loss:0.785736 Epoch:3,Loss:0.784244 Epoch:4,Loss:0.782739 Epoch:5,Loss:0.781233 Epoch:6,Loss:0.779737 Epoch:7,Loss:0.778262 Epoch:8,Loss:0.776822 Epoch:9,Loss:0.775428 Epoch:10,Loss:0.774091 Epoch:11,Loss:0.772821 Epoch:12,Loss:0.771625 Epoch:13,Loss:0.770507 Epoch:14,Loss:0.769467 Epoch:15,Loss:0.768504 Epoch:16,Loss:0.767612 Epoch:17,Loss:0.766784 Epoch:18,Loss:0.766013 Epoch:19,Loss:0.765293 Epoch:20,Loss:0.764617 Epoch:21,Loss:0.763979 Epoch:22,Loss:0.763374 Epoch:23,Loss:0.762798 Epoch:24,Loss:0.762245 Epoch:25,Loss:0.761712 Epoch:26,Loss:0.761195 Epoch:27,Loss:0.760692 Epoch:28,Loss:0.760198 Epoch:29,Loss:0.759711 Epoch:30,Loss:0.759228 Epoch:31,Loss:0.758748 Epoch:32,Loss:0.758268 Epoch:33,Loss:0.757787 Epoch:34,Loss:0.757302 Epoch:35,Loss:0.756813 Epoch:36,Loss:0.756318 Epoch:37,Loss:0.755816 Epoch:38,Loss:0.755305 Epoch:39,Loss:0.754786 Epoch:40,Loss:0.754257 Epoch:41,Loss:0.753716 Epoch:42,Loss:0.753165 Epoch:43,Loss:0.752602 Epoch:44,Loss:0.752026 Epoch:45,Loss:0.751437 Epoch:46,Loss:0.750836 Epoch:47,Loss:0.750221 Epoch:48,Loss:0.749594 Epoch:49,Loss:0.748953 Epoch:50,Loss:0.748300 Epoch:51,Loss:0.747635 Epoch:52,Loss:0.746958 Epoch:53,Loss:0.746270 Epoch:54,Loss:0.745572 Epoch:55,Loss:0.744864 Epoch:56,Loss:0.744148 Epoch:57,Loss:0.743425 Epoch:58,Loss:0.742694 Epoch:59,Loss:0.741958 Epoch:60,Loss:0.741217 Epoch:61,Loss:0.740473 Epoch:62,Loss:0.739725 Epoch:63,Loss:0.738975 Epoch:64,Loss:0.738224 Epoch:65,Loss:0.737471 Epoch:66,Loss:0.736718 Epoch:67,Loss:0.735964 Epoch:68,Loss:0.735211 Epoch:69,Loss:0.734458 Epoch:70,Loss:0.733706 Epoch:71,Loss:0.732954 Epoch:72,Loss:0.732204 Epoch:73,Loss:0.731456 Epoch:74,Loss:0.730709 Epoch:75,Loss:0.729964 Epoch:76,Loss:0.729223 Epoch:77,Loss:0.728484 Epoch:78,Loss:0.727750 Epoch:79,Loss:0.727019 Epoch:80,Loss:0.726294 Epoch:81,Loss:0.725574 Epoch:82,Loss:0.724860 Epoch:83,Loss:0.724152 Epoch:84,Loss:0.723452 Epoch:85,Loss:0.722758 Epoch:86,Loss:0.722072 Epoch:87,Loss:0.721393 Epoch:88,Loss:0.720722 Epoch:89,Loss:0.720058 Epoch:90,Loss:0.719403 Epoch:91,Loss:0.718755 Epoch:92,Loss:0.718115 Epoch:93,Loss:0.717483 Epoch:94,Loss:0.716859 Epoch:95,Loss:0.716242 Epoch:96,Loss:0.715634 Epoch:97,Loss:0.715033 Epoch:98,Loss:0.714440 Epoch:99,Loss:0.713856 Epoch:100,Loss:0.713278 Epoch:101,Loss:0.712709 Epoch:102,Loss:0.712148 Epoch:103,Loss:0.711594 Epoch:104,Loss:0.711047 Epoch:105,Loss:0.710508 Epoch:106,Loss:0.709977 Epoch:107,Loss:0.709452 Epoch:108,Loss:0.708935 Epoch:109,Loss:0.708425 Epoch:110,Loss:0.707922 Epoch:111,Loss:0.707425 Epoch:112,Loss:0.706936 Epoch:113,Loss:0.706452 Epoch:114,Loss:0.705976 Epoch:115,Loss:0.705505 Epoch:116,Loss:0.705041 Epoch:117,Loss:0.704583 Epoch:118,Loss:0.704132 Epoch:119,Loss:0.703686 Epoch:120,Loss:0.703246 Epoch:121,Loss:0.702812 Epoch:122,Loss:0.702383 Epoch:123,Loss:0.701960 Epoch:124,Loss:0.701543 Epoch:125,Loss:0.701130 Epoch:126,Loss:0.700724 Epoch:127,Loss:0.700322 Epoch:128,Loss:0.699925 Epoch:129,Loss:0.699534 Epoch:130,Loss:0.699147 Epoch:131,Loss:0.698766 Epoch:132,Loss:0.698389 Epoch:133,Loss:0.698016 Epoch:134,Loss:0.697648 Epoch:135,Loss:0.697285 Epoch:136,Loss:0.696926 Epoch:137,Loss:0.696571 Epoch:138,Loss:0.696221 Epoch:139,Loss:0.695875 Epoch:140,Loss:0.695533 Epoch:141,Loss:0.695194 Epoch:142,Loss:0.694860 Epoch:143,Loss:0.694529 Epoch:144,Loss:0.694202 Epoch:145,Loss:0.693879 Epoch:146,Loss:0.693560 Epoch:147,Loss:0.693243 Epoch:148,Loss:0.692931 Epoch:149,Loss:0.692621 Epoch:150,Loss:0.692315 Epoch:151,Loss:0.692012 Epoch:152,Loss:0.691712 Epoch:153,Loss:0.691416 Epoch:154,Loss:0.691122 Epoch:155,Loss:0.690832 Epoch:156,Loss:0.690544 Epoch:157,Loss:0.690259 Epoch:158,Loss:0.689977 Epoch:159,Loss:0.689698 Epoch:160,Loss:0.689421 Epoch:161,Loss:0.689147 Epoch:162,Loss:0.688875 Epoch:163,Loss:0.688606 Epoch:164,Loss:0.688340 Epoch:165,Loss:0.688076 Epoch:166,Loss:0.687814 Epoch:167,Loss:0.687554 Epoch:168,Loss:0.687297 Epoch:169,Loss:0.687042 Epoch:170,Loss:0.686789 Epoch:171,Loss:0.686539 Epoch:172,Loss:0.686290 Epoch:173,Loss:0.686044 Epoch:174,Loss:0.685799 Epoch:175,Loss:0.685557 Epoch:176,Loss:0.685316 Epoch:177,Loss:0.685077 Epoch:178,Loss:0.684840 Epoch:179,Loss:0.684605 Epoch:180,Loss:0.684372 Epoch:181,Loss:0.684141 Epoch:182,Loss:0.683911 Epoch:183,Loss:0.683683 Epoch:184,Loss:0.683456 Epoch:185,Loss:0.683231 Epoch:186,Loss:0.683008 Epoch:187,Loss:0.682786 Epoch:188,Loss:0.682566 Epoch:189,Loss:0.682347 Epoch:190,Loss:0.682130 Epoch:191,Loss:0.681914 Epoch:192,Loss:0.681700 Epoch:193,Loss:0.681486 Epoch:194,Loss:0.681275 Epoch:195,Loss:0.681064 Epoch:196,Loss:0.680855 Epoch:197,Loss:0.680647 Epoch:198,Loss:0.680441 Epoch:199,Loss:0.680236 Epoch:200,Loss:0.680032 Epoch:201,Loss:0.679829 Epoch:202,Loss:0.679627 Epoch:203,Loss:0.679426 Epoch:204,Loss:0.679227 Epoch:205,Loss:0.679029 Epoch:206,Loss:0.678831 Epoch:207,Loss:0.678635 Epoch:208,Loss:0.678440 Epoch:209,Loss:0.678246 Epoch:210,Loss:0.678053 Epoch:211,Loss:0.677861 Epoch:212,Loss:0.677670 Epoch:213,Loss:0.677480 Epoch:214,Loss:0.677291 Epoch:215,Loss:0.677102 Epoch:216,Loss:0.676915 Epoch:217,Loss:0.676729 Epoch:218,Loss:0.676543 Epoch:219,Loss:0.676359 Epoch:220,Loss:0.676175 Epoch:221,Loss:0.675992 Epoch:222,Loss:0.675810 Epoch:223,Loss:0.675628 Epoch:224,Loss:0.675448 Epoch:225,Loss:0.675268 Epoch:226,Loss:0.675089 Epoch:227,Loss:0.674911 Epoch:228,Loss:0.674734 Epoch:229,Loss:0.674557 Epoch:230,Loss:0.674381 Epoch:231,Loss:0.674206 Epoch:232,Loss:0.674032 Epoch:233,Loss:0.673858 Epoch:234,Loss:0.673685 Epoch:235,Loss:0.673513 Epoch:236,Loss:0.673341 Epoch:237,Loss:0.673170 Epoch:238,Loss:0.673000 Epoch:239,Loss:0.672830 Epoch:240,Loss:0.672661 Epoch:241,Loss:0.672493 Epoch:242,Loss:0.672325 Epoch:243,Loss:0.672158 Epoch:244,Loss:0.671991 Epoch:245,Loss:0.671825 Epoch:246,Loss:0.671660 Epoch:247,Loss:0.671495 Epoch:248,Loss:0.671331 Epoch:249,Loss:0.671167 Epoch:250,Loss:0.671004 Epoch:251,Loss:0.670842 Epoch:252,Loss:0.670680 Epoch:253,Loss:0.670518 Epoch:254,Loss:0.670357 Epoch:255,Loss:0.670197 Epoch:256,Loss:0.670037 Epoch:257,Loss:0.669878 Epoch:258,Loss:0.669719 Epoch:259,Loss:0.669561 Epoch:260,Loss:0.669403 Epoch:261,Loss:0.669246 Epoch:262,Loss:0.669089 Epoch:263,Loss:0.668932 Epoch:264,Loss:0.668777 Epoch:265,Loss:0.668621 Epoch:266,Loss:0.668466 Epoch:267,Loss:0.668312 Epoch:268,Loss:0.668158 Epoch:269,Loss:0.668004 Epoch:270,Loss:0.667851 Epoch:271,Loss:0.667699 Epoch:272,Loss:0.667547 Epoch:273,Loss:0.667395 Epoch:274,Loss:0.667244 Epoch:275,Loss:0.667093 Epoch:276,Loss:0.666942 Epoch:277,Loss:0.666792 Epoch:278,Loss:0.666643 Epoch:279,Loss:0.666493 Epoch:280,Loss:0.666345 Epoch:281,Loss:0.666196 Epoch:282,Loss:0.666048 Epoch:283,Loss:0.665901 Epoch:284,Loss:0.665754 Epoch:285,Loss:0.665607 Epoch:286,Loss:0.665460 Epoch:287,Loss:0.665314 Epoch:288,Loss:0.665169 Epoch:289,Loss:0.665023 Epoch:290,Loss:0.664879 Epoch:291,Loss:0.664734 Epoch:292,Loss:0.664590 Epoch:293,Loss:0.664446 Epoch:294,Loss:0.664303 Epoch:295,Loss:0.664160 Epoch:296,Loss:0.664017 Epoch:297,Loss:0.663875 Epoch:298,Loss:0.663733 Epoch:299,Loss:0.663591 Epoch:300,Loss:0.663450 Epoch:301,Loss:0.663309 Epoch:302,Loss:0.663169 Epoch:303,Loss:0.663028 Epoch:304,Loss:0.662889 Epoch:305,Loss:0.662749 Epoch:306,Loss:0.662610 Epoch:307,Loss:0.662471 Epoch:308,Loss:0.662332 Epoch:309,Loss:0.662194 Epoch:310,Loss:0.662056 Epoch:311,Loss:0.661919 Epoch:312,Loss:0.661781 Epoch:313,Loss:0.661644 Epoch:314,Loss:0.661508 Epoch:315,Loss:0.661372 Epoch:316,Loss:0.661236 Epoch:317,Loss:0.661100 Epoch:318,Loss:0.660964 Epoch:319,Loss:0.660829 Epoch:320,Loss:0.660695 Epoch:321,Loss:0.660560 Epoch:322,Loss:0.660426 Epoch:323,Loss:0.660292 Epoch:324,Loss:0.660159 Epoch:325,Loss:0.660026 Epoch:326,Loss:0.659893 Epoch:327,Loss:0.659760 Epoch:328,Loss:0.659628 Epoch:329,Loss:0.659496 Epoch:330,Loss:0.659364 Epoch:331,Loss:0.659232 Epoch:332,Loss:0.659101 Epoch:333,Loss:0.658970 Epoch:334,Loss:0.658840 Epoch:335,Loss:0.658709 Epoch:336,Loss:0.658579 Epoch:337,Loss:0.658450 Epoch:338,Loss:0.658320 Epoch:339,Loss:0.658191 Epoch:340,Loss:0.658062 Epoch:341,Loss:0.657933 Epoch:342,Loss:0.657805 Epoch:343,Loss:0.657677 Epoch:344,Loss:0.657549 Epoch:345,Loss:0.657421 Epoch:346,Loss:0.657294 Epoch:347,Loss:0.657167 Epoch:348,Loss:0.657040 Epoch:349,Loss:0.656914 Epoch:350,Loss:0.656788 Epoch:351,Loss:0.656662 Epoch:352,Loss:0.656536 Epoch:353,Loss:0.656411 Epoch:354,Loss:0.656285 Epoch:355,Loss:0.656161 Epoch:356,Loss:0.656036 Epoch:357,Loss:0.655911 Epoch:358,Loss:0.655787 Epoch:359,Loss:0.655663 Epoch:360,Loss:0.655540 Epoch:361,Loss:0.655416 Epoch:362,Loss:0.655293 Epoch:363,Loss:0.655171 Epoch:364,Loss:0.655048 Epoch:365,Loss:0.654925 Epoch:366,Loss:0.654803 Epoch:367,Loss:0.654682 Epoch:368,Loss:0.654560 Epoch:369,Loss:0.654438 Epoch:370,Loss:0.654317 Epoch:371,Loss:0.654196 Epoch:372,Loss:0.654076 Epoch:373,Loss:0.653955 Epoch:374,Loss:0.653835 Epoch:375,Loss:0.653715 Epoch:376,Loss:0.653596 Epoch:377,Loss:0.653476 Epoch:378,Loss:0.653357 Epoch:379,Loss:0.653238 Epoch:380,Loss:0.653119 Epoch:381,Loss:0.653001 Epoch:382,Loss:0.652883 Epoch:383,Loss:0.652765 Epoch:384,Loss:0.652647 Epoch:385,Loss:0.652529 Epoch:386,Loss:0.652412 Epoch:387,Loss:0.652295 Epoch:388,Loss:0.652178 Epoch:389,Loss:0.652062 Epoch:390,Loss:0.651945 Epoch:391,Loss:0.651829 Epoch:392,Loss:0.651713 Epoch:393,Loss:0.651597 Epoch:394,Loss:0.651482 Epoch:395,Loss:0.651367 Epoch:396,Loss:0.651252 Epoch:397,Loss:0.651137 Epoch:398,Loss:0.651022 Epoch:399,Loss:0.650908 Epoch:400,Loss:0.650794 Epoch:401,Loss:0.650680 Epoch:402,Loss:0.650566 Epoch:403,Loss:0.650453 Epoch:404,Loss:0.650340 Epoch:405,Loss:0.650227 Epoch:406,Loss:0.650114 Epoch:407,Loss:0.650001 Epoch:408,Loss:0.649889 Epoch:409,Loss:0.649777 Epoch:410,Loss:0.649665 Epoch:411,Loss:0.649553 Epoch:412,Loss:0.649442 Epoch:413,Loss:0.649331 Epoch:414,Loss:0.649220 Epoch:415,Loss:0.649109 Epoch:416,Loss:0.648998 Epoch:417,Loss:0.648888 Epoch:418,Loss:0.648778 Epoch:419,Loss:0.648668 Epoch:420,Loss:0.648558 Epoch:421,Loss:0.648448 Epoch:422,Loss:0.648339 Epoch:423,Loss:0.648230 Epoch:424,Loss:0.648121 Epoch:425,Loss:0.648013 Epoch:426,Loss:0.647904 Epoch:427,Loss:0.647796 Epoch:428,Loss:0.647688 Epoch:429,Loss:0.647580 Epoch:430,Loss:0.647472 Epoch:431,Loss:0.647365 Epoch:432,Loss:0.647258 Epoch:433,Loss:0.647151 Epoch:434,Loss:0.647044 Epoch:435,Loss:0.646937 Epoch:436,Loss:0.646831 Epoch:437,Loss:0.646725 Epoch:438,Loss:0.646619 Epoch:439,Loss:0.646513 Epoch:440,Loss:0.646407 Epoch:441,Loss:0.646302 Epoch:442,Loss:0.646197 Epoch:443,Loss:0.646092 Epoch:444,Loss:0.645987 Epoch:445,Loss:0.645882 Epoch:446,Loss:0.645778 Epoch:447,Loss:0.645674 Epoch:448,Loss:0.645570 Epoch:449,Loss:0.645466 Epoch:450,Loss:0.645362 Epoch:451,Loss:0.645259 Epoch:452,Loss:0.645156 Epoch:453,Loss:0.645053 Epoch:454,Loss:0.644950 Epoch:455,Loss:0.644848 Epoch:456,Loss:0.644745 Epoch:457,Loss:0.644643 Epoch:458,Loss:0.644541 Epoch:459,Loss:0.644439 Epoch:460,Loss:0.644338 Epoch:461,Loss:0.644236 Epoch:462,Loss:0.644135 Epoch:463,Loss:0.644034 Epoch:464,Loss:0.643933 Epoch:465,Loss:0.643833 Epoch:466,Loss:0.643732 Epoch:467,Loss:0.643632 Epoch:468,Loss:0.643532 Epoch:469,Loss:0.643432 Epoch:470,Loss:0.643332 Epoch:471,Loss:0.643233 Epoch:472,Loss:0.643133 Epoch:473,Loss:0.643034 Epoch:474,Loss:0.642935 Epoch:475,Loss:0.642837 Epoch:476,Loss:0.642738 Epoch:477,Loss:0.642640 Epoch:478,Loss:0.642542 Epoch:479,Loss:0.642444 Epoch:480,Loss:0.642346 Epoch:481,Loss:0.642248 Epoch:482,Loss:0.642151 Epoch:483,Loss:0.642054 Epoch:484,Loss:0.641956 Epoch:485,Loss:0.641860 Epoch:486,Loss:0.641763 Epoch:487,Loss:0.641666 Epoch:488,Loss:0.641570 Epoch:489,Loss:0.641474 Epoch:490,Loss:0.641378 Epoch:491,Loss:0.641282 Epoch:492,Loss:0.641187 Epoch:493,Loss:0.641091 Epoch:494,Loss:0.640996 Epoch:495,Loss:0.640901 Epoch:496,Loss:0.640806 Epoch:497,Loss:0.640712 Epoch:498,Loss:0.640617 Epoch:499,Loss:0.640523 Epoch:500,Loss:0.640429 Epoch:501,Loss:0.640335 Epoch:502,Loss:0.640241 Epoch:503,Loss:0.640147 Epoch:504,Loss:0.640054 Epoch:505,Loss:0.639961 Epoch:506,Loss:0.639867 Epoch:507,Loss:0.639775 Epoch:508,Loss:0.639682 Epoch:509,Loss:0.639589 Epoch:510,Loss:0.639497 Epoch:511,Loss:0.639405 Epoch:512,Loss:0.639313 Epoch:513,Loss:0.639221 Epoch:514,Loss:0.639129 Epoch:515,Loss:0.639038 Epoch:516,Loss:0.638947 Epoch:517,Loss:0.638855 Epoch:518,Loss:0.638764 Epoch:519,Loss:0.638674 Epoch:520,Loss:0.638583 Epoch:521,Loss:0.638493 Epoch:522,Loss:0.638402 Epoch:523,Loss:0.638312 Epoch:524,Loss:0.638222 Epoch:525,Loss:0.638133 Epoch:526,Loss:0.638043 Epoch:527,Loss:0.637954 Epoch:528,Loss:0.637864 Epoch:529,Loss:0.637775 Epoch:530,Loss:0.637686 Epoch:531,Loss:0.637598 Epoch:532,Loss:0.637509 Epoch:533,Loss:0.637421 Epoch:534,Loss:0.637332 Epoch:535,Loss:0.637244 Epoch:536,Loss:0.637156 Epoch:537,Loss:0.637069 Epoch:538,Loss:0.636981 Epoch:539,Loss:0.636894 Epoch:540,Loss:0.636806 Epoch:541,Loss:0.636719 Epoch:542,Loss:0.636632 Epoch:543,Loss:0.636546 Epoch:544,Loss:0.636459 Epoch:545,Loss:0.636373 Epoch:546,Loss:0.636286 Epoch:547,Loss:0.636200 Epoch:548,Loss:0.636114 Epoch:549,Loss:0.636029 Epoch:550,Loss:0.635943 Epoch:551,Loss:0.635858 Epoch:552,Loss:0.635772 Epoch:553,Loss:0.635687 Epoch:554,Loss:0.635602 Epoch:555,Loss:0.635517 Epoch:556,Loss:0.635433 Epoch:557,Loss:0.635348 Epoch:558,Loss:0.635264 Epoch:559,Loss:0.635180 Epoch:560,Loss:0.635096 Epoch:561,Loss:0.635012 Epoch:562,Loss:0.634928 Epoch:563,Loss:0.634845 Epoch:564,Loss:0.634761 Epoch:565,Loss:0.634678 Epoch:566,Loss:0.634595 Epoch:567,Loss:0.634512 Epoch:568,Loss:0.634430 Epoch:569,Loss:0.634347 Epoch:570,Loss:0.634265 Epoch:571,Loss:0.634182 Epoch:572,Loss:0.634100 Epoch:573,Loss:0.634018 Epoch:574,Loss:0.633937 Epoch:575,Loss:0.633855 Epoch:576,Loss:0.633773 Epoch:577,Loss:0.633692 Epoch:578,Loss:0.633611 Epoch:579,Loss:0.633530 Epoch:580,Loss:0.633449 Epoch:581,Loss:0.633368 Epoch:582,Loss:0.633288 Epoch:583,Loss:0.633207 Epoch:584,Loss:0.633127 Epoch:585,Loss:0.633047 Epoch:586,Loss:0.632967 Epoch:587,Loss:0.632887 Epoch:588,Loss:0.632807 Epoch:589,Loss:0.632728 Epoch:590,Loss:0.632648 Epoch:591,Loss:0.632569 Epoch:592,Loss:0.632490 Epoch:593,Loss:0.632411 Epoch:594,Loss:0.632332 Epoch:595,Loss:0.632254 Epoch:596,Loss:0.632175 Epoch:597,Loss:0.632097 Epoch:598,Loss:0.632019 Epoch:599,Loss:0.631941 Epoch:600,Loss:0.631863 Epoch:601,Loss:0.631785 Epoch:602,Loss:0.631708 Epoch:603,Loss:0.631630 Epoch:604,Loss:0.631553 Epoch:605,Loss:0.631476 Epoch:606,Loss:0.631399 Epoch:607,Loss:0.631322 Epoch:608,Loss:0.631245 Epoch:609,Loss:0.631169 Epoch:610,Loss:0.631092 Epoch:611,Loss:0.631016 Epoch:612,Loss:0.630940 Epoch:613,Loss:0.630864 Epoch:614,Loss:0.630788 Epoch:615,Loss:0.630712 Epoch:616,Loss:0.630637 Epoch:617,Loss:0.630561 Epoch:618,Loss:0.630486 Epoch:619,Loss:0.630411 Epoch:620,Loss:0.630336 Epoch:621,Loss:0.630261 Epoch:622,Loss:0.630186 Epoch:623,Loss:0.630111 Epoch:624,Loss:0.630037 Epoch:625,Loss:0.629963 Epoch:626,Loss:0.629888 Epoch:627,Loss:0.629814 Epoch:628,Loss:0.629741 Epoch:629,Loss:0.629667 Epoch:630,Loss:0.629593 Epoch:631,Loss:0.629520 Epoch:632,Loss:0.629446 Epoch:633,Loss:0.629373 Epoch:634,Loss:0.629300 Epoch:635,Loss:0.629227 Epoch:636,Loss:0.629154 Epoch:637,Loss:0.629082 Epoch:638,Loss:0.629009 Epoch:639,Loss:0.628937 Epoch:640,Loss:0.628864 Epoch:641,Loss:0.628792 Epoch:642,Loss:0.628720 Epoch:643,Loss:0.628649 Epoch:644,Loss:0.628577 Epoch:645,Loss:0.628505 Epoch:646,Loss:0.628434 Epoch:647,Loss:0.628362 Epoch:648,Loss:0.628291 Epoch:649,Loss:0.628220 Epoch:650,Loss:0.628149 Epoch:651,Loss:0.628078 Epoch:652,Loss:0.628008 Epoch:653,Loss:0.627937 Epoch:654,Loss:0.627867 Epoch:655,Loss:0.627797 Epoch:656,Loss:0.627726 Epoch:657,Loss:0.627656 Epoch:658,Loss:0.627587 Epoch:659,Loss:0.627517 Epoch:660,Loss:0.627447 Epoch:661,Loss:0.627378 Epoch:662,Loss:0.627308 Epoch:663,Loss:0.627239 Epoch:664,Loss:0.627170 Epoch:665,Loss:0.627101 Epoch:666,Loss:0.627032 Epoch:667,Loss:0.626963 Epoch:668,Loss:0.626895 Epoch:669,Loss:0.626826 Epoch:670,Loss:0.626758 Epoch:671,Loss:0.626690 Epoch:672,Loss:0.626622 Epoch:673,Loss:0.626554 Epoch:674,Loss:0.626486 Epoch:675,Loss:0.626418 Epoch:676,Loss:0.626351 Epoch:677,Loss:0.626283 Epoch:678,Loss:0.626216 Epoch:679,Loss:0.626149 Epoch:680,Loss:0.626082 Epoch:681,Loss:0.626015 Epoch:682,Loss:0.625948 Epoch:683,Loss:0.625881 Epoch:684,Loss:0.625814 Epoch:685,Loss:0.625748 Epoch:686,Loss:0.625682 Epoch:687,Loss:0.625615 Epoch:688,Loss:0.625549 Epoch:689,Loss:0.625483 Epoch:690,Loss:0.625417 Epoch:691,Loss:0.625352 Epoch:692,Loss:0.625286 Epoch:693,Loss:0.625221 Epoch:694,Loss:0.625155 Epoch:695,Loss:0.625090 Epoch:696,Loss:0.625025 Epoch:697,Loss:0.624960 Epoch:698,Loss:0.624895 Epoch:699,Loss:0.624830 Epoch:700,Loss:0.624765 Epoch:701,Loss:0.624701 Epoch:702,Loss:0.624637 Epoch:703,Loss:0.624572 Epoch:704,Loss:0.624508 Epoch:705,Loss:0.624444 Epoch:706,Loss:0.624380 Epoch:707,Loss:0.624316 Epoch:708,Loss:0.624252 Epoch:709,Loss:0.624189 Epoch:710,Loss:0.624125 Epoch:711,Loss:0.624062 Epoch:712,Loss:0.623999 Epoch:713,Loss:0.623936 Epoch:714,Loss:0.623873 Epoch:715,Loss:0.623810 Epoch:716,Loss:0.623747 Epoch:717,Loss:0.623684 Epoch:718,Loss:0.623622 Epoch:719,Loss:0.623559 Epoch:720,Loss:0.623497 Epoch:721,Loss:0.623435 Epoch:722,Loss:0.623372 Epoch:723,Loss:0.623310 Epoch:724,Loss:0.623249 Epoch:725,Loss:0.623187 Epoch:726,Loss:0.623125 Epoch:727,Loss:0.623064 Epoch:728,Loss:0.623002 Epoch:729,Loss:0.622941 Epoch:730,Loss:0.622880 Epoch:731,Loss:0.622819 Epoch:732,Loss:0.622757 Epoch:733,Loss:0.622697 Epoch:734,Loss:0.622636 Epoch:735,Loss:0.622575 Epoch:736,Loss:0.622515 Epoch:737,Loss:0.622454 Epoch:738,Loss:0.622394 Epoch:739,Loss:0.622334 Epoch:740,Loss:0.622274 Epoch:741,Loss:0.622214 Epoch:742,Loss:0.622154 Epoch:743,Loss:0.622094 Epoch:744,Loss:0.622034 Epoch:745,Loss:0.621975 Epoch:746,Loss:0.621915 Epoch:747,Loss:0.621856 Epoch:748,Loss:0.621796 Epoch:749,Loss:0.621737 Epoch:750,Loss:0.621678 Epoch:751,Loss:0.621619 Epoch:752,Loss:0.621561 Epoch:753,Loss:0.621502 Epoch:754,Loss:0.621443 Epoch:755,Loss:0.621385 Epoch:756,Loss:0.621326 Epoch:757,Loss:0.621268 Epoch:758,Loss:0.621210 Epoch:759,Loss:0.621152 Epoch:760,Loss:0.621094 Epoch:761,Loss:0.621036 Epoch:762,Loss:0.620978 Epoch:763,Loss:0.620920 Epoch:764,Loss:0.620863 Epoch:765,Loss:0.620805 Epoch:766,Loss:0.620748 Epoch:767,Loss:0.620691 Epoch:768,Loss:0.620634 Epoch:769,Loss:0.620577 Epoch:770,Loss:0.620520 Epoch:771,Loss:0.620463 Epoch:772,Loss:0.620406 Epoch:773,Loss:0.620349 Epoch:774,Loss:0.620293 Epoch:775,Loss:0.620236 Epoch:776,Loss:0.620180 Epoch:777,Loss:0.620124 Epoch:778,Loss:0.620068 Epoch:779,Loss:0.620012 Epoch:780,Loss:0.619956 Epoch:781,Loss:0.619900 Epoch:782,Loss:0.619844 Epoch:783,Loss:0.619788 Epoch:784,Loss:0.619733 Epoch:785,Loss:0.619677 Epoch:786,Loss:0.619622 Epoch:787,Loss:0.619567 Epoch:788,Loss:0.619512 Epoch:789,Loss:0.619457 Epoch:790,Loss:0.619402 Epoch:791,Loss:0.619347 Epoch:792,Loss:0.619292 Epoch:793,Loss:0.619237 Epoch:794,Loss:0.619183 Epoch:795,Loss:0.619128 Epoch:796,Loss:0.619074 Epoch:797,Loss:0.619020 Epoch:798,Loss:0.618965 Epoch:799,Loss:0.618911 Epoch:800,Loss:0.618857 Epoch:801,Loss:0.618803 Epoch:802,Loss:0.618750 Epoch:803,Loss:0.618696 Epoch:804,Loss:0.618642 Epoch:805,Loss:0.618589 Epoch:806,Loss:0.618535 Epoch:807,Loss:0.618482 Epoch:808,Loss:0.618429 Epoch:809,Loss:0.618376 Epoch:810,Loss:0.618322 Epoch:811,Loss:0.618270 Epoch:812,Loss:0.618217 Epoch:813,Loss:0.618164 Epoch:814,Loss:0.618111 Epoch:815,Loss:0.618059 Epoch:816,Loss:0.618006 Epoch:817,Loss:0.617954 Epoch:818,Loss:0.617901 Epoch:819,Loss:0.617849 Epoch:820,Loss:0.617797 Epoch:821,Loss:0.617745 Epoch:822,Loss:0.617693 Epoch:823,Loss:0.617641 Epoch:824,Loss:0.617589 Epoch:825,Loss:0.617538 Epoch:826,Loss:0.617486 Epoch:827,Loss:0.617435 Epoch:828,Loss:0.617383 Epoch:829,Loss:0.617332 Epoch:830,Loss:0.617281 Epoch:831,Loss:0.617230 Epoch:832,Loss:0.617179 Epoch:833,Loss:0.617128 Epoch:834,Loss:0.617077 Epoch:835,Loss:0.617026 Epoch:836,Loss:0.616975 Epoch:837,Loss:0.616925 Epoch:838,Loss:0.616874 Epoch:839,Loss:0.616824 Epoch:840,Loss:0.616773 Epoch:841,Loss:0.616723 Epoch:842,Loss:0.616673 Epoch:843,Loss:0.616623 Epoch:844,Loss:0.616573 Epoch:845,Loss:0.616523 Epoch:846,Loss:0.616473 Epoch:847,Loss:0.616423 Epoch:848,Loss:0.616374 Epoch:849,Loss:0.616324 Epoch:850,Loss:0.616275 Epoch:851,Loss:0.616225 Epoch:852,Loss:0.616176 Epoch:853,Loss:0.616127 Epoch:854,Loss:0.616078 Epoch:855,Loss:0.616029 Epoch:856,Loss:0.615980 Epoch:857,Loss:0.615931 Epoch:858,Loss:0.615882 Epoch:859,Loss:0.615833 Epoch:860,Loss:0.615785 Epoch:861,Loss:0.615736 Epoch:862,Loss:0.615688 Epoch:863,Loss:0.615639 Epoch:864,Loss:0.615591 Epoch:865,Loss:0.615543 Epoch:866,Loss:0.615495 Epoch:867,Loss:0.615447 Epoch:868,Loss:0.615399 Epoch:869,Loss:0.615351 Epoch:870,Loss:0.615303 Epoch:871,Loss:0.615255 Epoch:872,Loss:0.615208 Epoch:873,Loss:0.615160 Epoch:874,Loss:0.615113 Epoch:875,Loss:0.615065 Epoch:876,Loss:0.615018 Epoch:877,Loss:0.614971 Epoch:878,Loss:0.614923 Epoch:879,Loss:0.614876 Epoch:880,Loss:0.614829 Epoch:881,Loss:0.614783 Epoch:882,Loss:0.614736 Epoch:883,Loss:0.614689 Epoch:884,Loss:0.614642 Epoch:885,Loss:0.614596 Epoch:886,Loss:0.614549 Epoch:887,Loss:0.614503 Epoch:888,Loss:0.614456 Epoch:889,Loss:0.614410 Epoch:890,Loss:0.614364 Epoch:891,Loss:0.614318 Epoch:892,Loss:0.614272 Epoch:893,Loss:0.614226 Epoch:894,Loss:0.614180 Epoch:895,Loss:0.614134 Epoch:896,Loss:0.614088 Epoch:897,Loss:0.614043 Epoch:898,Loss:0.613997 Epoch:899,Loss:0.613952 Epoch:900,Loss:0.613906 Epoch:901,Loss:0.613861 Epoch:902,Loss:0.613816 Epoch:903,Loss:0.613770 Epoch:904,Loss:0.613725 Epoch:905,Loss:0.613680 Epoch:906,Loss:0.613635 Epoch:907,Loss:0.613590 Epoch:908,Loss:0.613545 Epoch:909,Loss:0.613501 Epoch:910,Loss:0.613456 Epoch:911,Loss:0.613411 Epoch:912,Loss:0.613367 Epoch:913,Loss:0.613323 Epoch:914,Loss:0.613278 Epoch:915,Loss:0.613234 Epoch:916,Loss:0.613190 Epoch:917,Loss:0.613145 Epoch:918,Loss:0.613101 Epoch:919,Loss:0.613057 Epoch:920,Loss:0.613014 Epoch:921,Loss:0.612970 Epoch:922,Loss:0.612926 Epoch:923,Loss:0.612882 Epoch:924,Loss:0.612839 Epoch:925,Loss:0.612795 Epoch:926,Loss:0.612752 Epoch:927,Loss:0.612708 Epoch:928,Loss:0.612665 Epoch:929,Loss:0.612621 Epoch:930,Loss:0.612578 Epoch:931,Loss:0.612535 Epoch:932,Loss:0.612492 Epoch:933,Loss:0.612449 Epoch:934,Loss:0.612406 Epoch:935,Loss:0.612363 Epoch:936,Loss:0.612321 Epoch:937,Loss:0.612278 Epoch:938,Loss:0.612235 Epoch:939,Loss:0.612193 Epoch:940,Loss:0.612150 Epoch:941,Loss:0.612108 Epoch:942,Loss:0.612066 Epoch:943,Loss:0.612023 Epoch:944,Loss:0.611981 Epoch:945,Loss:0.611939 Epoch:946,Loss:0.611897 Epoch:947,Loss:0.611855 Epoch:948,Loss:0.611813 Epoch:949,Loss:0.611771 Epoch:950,Loss:0.611729 Epoch:951,Loss:0.611688 Epoch:952,Loss:0.611646 Epoch:953,Loss:0.611604 Epoch:954,Loss:0.611563 Epoch:955,Loss:0.611521 Epoch:956,Loss:0.611480 Epoch:957,Loss:0.611439 Epoch:958,Loss:0.611398 Epoch:959,Loss:0.611356 Epoch:960,Loss:0.611315 Epoch:961,Loss:0.611274 Epoch:962,Loss:0.611233 Epoch:963,Loss:0.611192 Epoch:964,Loss:0.611151 Epoch:965,Loss:0.611111 Epoch:966,Loss:0.611070 Epoch:967,Loss:0.611029 Epoch:968,Loss:0.610989 Epoch:969,Loss:0.610948 Epoch:970,Loss:0.610908 Epoch:971,Loss:0.610868 Epoch:972,Loss:0.610827 Epoch:973,Loss:0.610787 Epoch:974,Loss:0.610747 Epoch:975,Loss:0.610707 Epoch:976,Loss:0.610667 Epoch:977,Loss:0.610627 Epoch:978,Loss:0.610587 Epoch:979,Loss:0.610547 Epoch:980,Loss:0.610507 Epoch:981,Loss:0.610467 Epoch:982,Loss:0.610428 Epoch:983,Loss:0.610388 Epoch:984,Loss:0.610349 Epoch:985,Loss:0.610309 Epoch:986,Loss:0.610270 Epoch:987,Loss:0.610231 Epoch:988,Loss:0.610191 Epoch:989,Loss:0.610152 Epoch:990,Loss:0.610113 Epoch:991,Loss:0.610074 Epoch:992,Loss:0.610035 Epoch:993,Loss:0.609996 Epoch:994,Loss:0.609957 Epoch:995,Loss:0.609918 Epoch:996,Loss:0.609879 Epoch:997,Loss:0.609841 Epoch:998,Loss:0.609802 Epoch:999,Loss:0.609763losscritier(model(X_test),y_test) losstensor(0.6142, grad_fnBinaryCrossEntropyBackward0)
http://www.huolong8.cn/news/198430/

相关文章:

  • 寺庙网站建设方案池州网站建设推广
  • 上海新闻发布会网站海外推广谷歌seo方案
  • 大兴网站建设公司重庆seo教程搜索引擎优化
  • 足球外围网站怎么做做亚马逊有什么网站可以借鉴
  • 简述网站开发的几个步骤网页建设网站代码
  • 做的网站 只显示代码国外网站如何做推广
  • 网站分页设计wordpress 文章迁移
  • 好看的网站颜色搭配做网站还有流量么
  • 微网站是什么时候创建的做网站的背景怎么调整大小
  • 网站建设主题有哪些注意事项怎样让百度收录自己的网站
  • 郑州网站建设、石家庄规划建设局网站
  • 做外贸在哪个网站注册扫二维码直接进入网站 怎么做
  • nodejs可以做网站吗营销型网站北京
  • 枣庄做网站公司长沙网络推广哪家好
  • 帮别人建设网站多少利润网站做轮播图的意义
  • 东莞技术网站建设合肥seo搜索优化
  • 环保网站建设的目的静态网站什么样
  • 苏州做网站价格自己做的网站提示危险
  • 丰功网站建设中山里水网站建设
  • 自助建站系统模板游戏科技
  • 昌乐网站设计郑州专业的网站建设公司哪家好
  • 网站开发技术路线与规范腾讯云服务器可以做传奇网站吗
  • 简单的网站设计开发wordpress添加多个菜单
  • 网站建设中备案期间网站怎么关闭
  • 红酒集团网站建设仙桃网站制作州国
  • 教育集团网站设计策划书网站建设的总结
  • 个性化网站设计世界杯积分榜排名
  • 网站美工培训学校网站建设与管理实训课程
  • 献县做网站代理网址ag80hncom
  • 黄山网站建设电话青海网站建设系统