多语言网站源码,室内设计公司名字起名大全,房地产排名前三十强排名,免费ppt模板下载红色主题回归预测 | MATLAB实现SCN随机配置网络多输入单输出回归预测 目录 回归预测 | MATLAB实现SCN随机配置网络多输入单输出回归预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 Matlab实现SCN随机配置网络多变量回归预测 1.data为数据集#xff0c;7个输入特征#xff0…回归预测 | MATLAB实现SCN随机配置网络多输入单输出回归预测 目录 回归预测 | MATLAB实现SCN随机配置网络多输入单输出回归预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 Matlab实现SCN随机配置网络多变量回归预测 1.data为数据集7个输入特征1个输出特征运行环境Matlab2018b及以上。 2.main.m为主程序文件其余为函数文件无需运行。 3.命令窗口输出MAE、MAPE、RMSE和R2可在下载区获取数据和程序内容。 4.赠送一个PDF学习资料。 程序设计
完整源码和数据获取方式私信回复MATLAB实现SCN随机配置网络多输入单输出回归预测。
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行%% 导入数据
res xlsread(data.xlsx);%% 划分训练集和测试集
temp randperm(103);P_train res(temp(1: 80), 1: 7);
T_train res(temp(1: 80), 8);
M size(P_train, 2);P_test res(temp(81: end), 1: 7);
T_test res(temp(81: end), 8);
N size(P_test, 2);%% 数据归一化
[p_train, ps_input] mapminmax(P_train, 0, 1);
p_test mapminmax(apply, P_test, ps_input);[t_train, ps_output] mapminmax(T_train, 0, 1);
t_test mapminmax(apply, T_test, ps_output);%% 仿真测试
t_sim1 sim(net, p_train);
t_sim2 sim(net, p_test);%% 数据反归一化
T_sim1 mapminmax(reverse, t_sim1, ps_output);
T_sim2 mapminmax(reverse, t_sim2, ps_output);%% 均方根误差
error1 sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 sqrt(sum((T_sim2 - T_test ).^2) ./ N);%% 相关指标计算
% 决定系数 R2
R1 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 1 - norm(T_test - T_sim2)^2 / norm(T_test - mean(T_test ))^2;disp([训练集数据的R2为, num2str(R1)])
disp([测试集数据的R2为, num2str(R2)])% 平均绝对误差 MAE
mae1 sum(abs(T_sim1 - T_train)) ./ M ;
mae2 sum(abs(T_sim2 - T_test )) ./ N ;disp([训练集数据的MAE为, num2str(mae1)])
disp([测试集数据的MAE为, num2str(mae2)])% 平均相对误差 MBE
mbe1 sum(T_sim1 - T_train) ./ M ;
mbe2 sum(T_sim2 - T_test ) ./ N ;disp([训练集数据的MBE为, num2str(mbe1)])
disp([测试集数据的MBE为, num2str(mbe2)])参考资料 [1] https://blog.csdn.net/kjm13182345320/article/details/129215161 [2] https://blog.csdn.net/kjm13182345320/article/details/128105718