定制高端网站建设设计,怎么攻击织梦网站,东莞网站优化找哪家,佛山网站建设哪里好前言#xff1a;我们前面已经学习了数据结构的栈和队列#xff0c;今天我们就来学习一下数据结构中的二叉树#xff0c;那么作为二叉树我们就得先了解树的一些概念#xff0c;还有二叉树一些特点。 树的概念#xff1a;
树是一种非线性的数据结构#xff0c;它是由n我们前面已经学习了数据结构的栈和队列今天我们就来学习一下数据结构中的二叉树那么作为二叉树我们就得先了解树的一些概念还有二叉树一些特点。 树的概念
树是一种非线性的数据结构它是由nn0个有限结点组成一个具有层次关系的集合。把它叫做树是因 为它看起来像一棵倒挂的树也就是说它是根朝上而叶朝下的。 1.有一个特殊的结点称为根结点根节点没有前驱结点 2.除根节点外其余结点被分成M(M0)个互不相交的集合T1、T2、……、Tm其中每一个集合Ti(1 i m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱可以有0个或多个后继 3.树是递归定义的 注意树形结构中子树之间不能有交集否则就不是树形结构子树是不相交的除了根节点外每个节点有且只有一个父节点一棵N个节点的树只有N-1条边。 我们的树可以拆解成根和子树图中的树就是有根和子树所组成A就是树的根而B/C/D就为该树的子树。 树的相关概念 节点的度一个节点含有的子树的个数称为该节点的度 如上图A的为6 叶节点或终端节点度为0的节点称为叶节点 如上图B、C、H、I…等节点为叶节点 非终端节点或分支节点度不为0的节点 如上图D、E、F、G…等节点为分支节点 双亲节点或父节点若一个节点含有子节点则这个节点称为其子节点的父节点 如上图A是B的父节点 孩子节点或子节点一个节点含有的子树的根节点称为该节点的子节点 如上图B是A的孩子节点 兄弟节点具有相同父节点的节点互称为兄弟节点 如上图B、C是兄弟节点 树的度一棵树中最大的节点的度称为树的度 如上图树的度为6 节点的层次从根开始定义起根为第1层根的子节点为第2层以此类推 树的高度或深度树中节点的最大层次 如上图树的高度为4 堂兄弟节点双亲在同一层的节点互为堂兄弟如上图H、I互为兄弟节点 节点的祖先从根到该节点所经分支上的所有节点如上图A是所有节点的祖先 子孙以某节点为根的子树中任一节点都称为该节点的子孙。如上图所有节点都是A的子孙 森林由mm0棵互不相交的树的集合称为森林 树的表示 树结构相对线性表就比较复杂了要存储表示起来就比较麻烦了既然保存值域也要保存结点和结点之间 的关系实际中树有很多种表示方式如双亲表示法孩子表示法、孩子双亲表示法以及孩子兄弟表示法 等。我们这里就简单的了解其中最常用的孩子兄弟表示法。 如图该树的度为6那我们可以用几种方式来存储树。 1.以指针数组的方式存储
#define N 6
struct TreeNode
{int val;struct TreeNode* childArr[N];
}2.以顺序表的方式存储
struct TreeNode
{int val;SeqList childSL;
}3.以左孩子右兄弟的方式存储
struct TreeNode
{int val;struct TreeNode* leftchild;struct TreeNode* rightbrother;
}第一种方法我们需要知道树的度数才可以更加方便的使用我们的第三种方式是最容易理解的就是相当于让大儿子去叫他的兄弟。我们第三种方法的逻辑如下图所示 这都是第三种方法逻辑上的表示。 树在实际中的运用表示文件系统的目录树结构 说起运用的话就得谈到我们刚刚了解Linux的树状目录结构了 这也是树的结构。 二叉树概念
一棵二叉树是结点的一个有限集合该集合:
或者为空由一个根节点加上两棵别称为左子树和右子树的二叉树组成 1. 二叉树不存在度大于2的结点 2. 二叉树的子树有左右之分次序不能颠倒因此二叉树是有序树 我们的二叉树都是以下几种情况复合而成 而我们的现实中也有着许许多多的二叉树
接下来我们介绍两种特殊的二叉树满二叉树和完全二叉树。
满二叉树一个二叉树如果每一个层的结点数都达到最大值则这个二叉树就是满二叉树。也就是 说如果一个二叉树的层数为K且结点总数是 则它就是满二叉树。完全二叉树完全二叉树是效率很高的数据结构完全二叉树是由满二叉树而引出来的。对于深度为K 的有n个结点的二叉树当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对 应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树 我们知道了满二叉树和完全二叉树的概念我们就可以得到它们的节点和高度的关系 满二叉树每一层都是满的所以我们把每一层的节点数加起来就知道满二叉树的节点个数再通过同时取对数就可以得到高度和节点之间的关系。 因为高度为h的完全二叉树它前h-1层的节点是满的而最后一层不一定满。它最后一层最少是一个节点最多是 2^(h-1)个节点最少和最多节点就可以算出来了 满二叉树是可以通过数组一层一层存储的而且下标的访问也很方便。 每一个节点都有左右孩子而左右孩子节点和父节点之间是有规律存在的 父节点乘以2加上1就是它左孩子节点的下标而父节点乘以2加上2就是它右孩子节点的下标而我们的左右孩子节点的下标减去1再除以2都是父节点的下标。
完全二叉树就不适合数组结构存储它只适合链式结构存储 如果大家觉得有帮助的话就支持一下吧