陕西网站建设营销推广,定制产品,免费建设网站申请,wordpress添加发布视频教程Python学习笔记第六十九天 Matplotlib 直方图绘制直方图结合 Pandas绘制直方图Series 对象绘制直方图 后记 Matplotlib 直方图
我们可以使用 pyplot 中的 hist() 方法来绘制直方图。
hist() 方法是 Matplotlib 库中的 pyplot 子库中的一种用于绘制直方图的函数。
hist() 方法… Python学习笔记第六十九天 Matplotlib 直方图绘制直方图结合 Pandas绘制直方图Series 对象绘制直方图 后记 Matplotlib 直方图
我们可以使用 pyplot 中的 hist() 方法来绘制直方图。
hist() 方法是 Matplotlib 库中的 pyplot 子库中的一种用于绘制直方图的函数。
hist() 方法可以用于可视化数据的分布情况例如观察数据的中心趋势、偏态和异常值等。
hist() 方法语法格式如下
matplotlib.pyplot.hist(x, binsNone, rangeNone, densityFalse, weightsNone, cumulativeFalse, bottomNone, histtypebar, alignmid, orientationvertical, rwidthNone, logFalse, colorNone, labelNone, stackedFalse, **kwargs)参数说明
x表示要绘制直方图的数据可以是一个一维数组或列表。bins可选参数表示直方图的箱数。默认为10。range可选参数表示直方图的值域范围可以是一个二元组或列表。默认为None即使用数据中的最小值和最大值。density可选参数表示是否将直方图归一化。默认为False即直方图的高度为每个箱子内的样本数而不是频率或概率密度。weights可选参数表示每个数据点的权重。默认为None。cumulative可选参数表示是否绘制累积分布图。默认为False。bottom可选参数表示直方图的起始高度。默认为None。histtype可选参数表示直方图的类型可以是’bar’、‘barstacked’、‘step’、‘stepfilled’等。默认为’bar’。align可选参数表示直方图箱子的对齐方式可以是’left’、‘mid’、‘right’。默认为’mid’。orientation可选参数表示直方图的方向可以是’vertical’、‘horizontal’。默认为’vertical’。rwidth可选参数表示每个箱子的宽度。默认为None。log可选参数表示是否在y轴上使用对数刻度。默认为False。color可选参数表示直方图的颜色。label可选参数表示直方图的标签。stacked可选参数表示是否堆叠不同的直方图。默认为False。**kwargs可选参数表示其他绘图参数。
绘制直方图
以下实例我们简单实用 hist() 来创建一个直方图:
# 实例 1
import matplotlib.pyplot as plt
import numpy as np# 生成一组随机数据
data np.random.randn(1000)# 绘制直方图
plt.hist(data, bins30, colorskyblue, alpha0.8)# 设置图表属性
plt.title(绘制直方图)
plt.xlabel(Value)
plt.ylabel(Frequency)# 显示图表
plt.show()以下实例演示了如何使用 hist() 函数绘制多个数据组的直方图并进行比较
# 实例 2
import matplotlib.pyplot as plt
import numpy as np# 生成三组随机数据
data1 np.random.normal(0, 1, 1000)
data2 np.random.normal(2, 1, 1000)
data3 np.random.normal(-2, 1, 1000)# 绘制直方图
plt.hist(data1, bins30, alpha0.5, labelData 1)
plt.hist(data2, bins30, alpha0.5, labelData 2)
plt.hist(data3, bins30, alpha0.5, labelData 3)# 设置图表属性
plt.title(绘制多个数据组的直方图)
plt.xlabel(Value)
plt.ylabel(Frequency)
plt.legend()# 显示图表
plt.show()以上实例中我们生成了三组不同的随机数据并使用 hist() 函数绘制了它们的直方图。通过设置不同的均值和标准差我们可以生成具有不同分布特征的随机数据。
我们设置了 bins 参数为 30这意味着将数据范围分成 30 个等宽的区间然后统计每个区间内数据的频数。
我们设置了 alpha 参数为 0.5这意味着每个直方图的颜色透明度为 50%。 我们使用 label 参数设置了每个直方图的标签以便在图例中显示。
然后使用 legend() 函数显示图例。最后我们使用 title()、xlabel() 和 ylabel() 函数设置了图表的标题和坐标轴标签。
运行完我们可以清晰地看出这三组数据的分布情况其中 data1 和 data2 分布接近正态分布而 data3 分布偏态。
这种比较直方图的方式可以帮助我们分析和比较不同数据组的分布情况。
结合 Pandas绘制直方图
以下实例我们结合 Pandas 来绘制直方图
# 实例 3
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt# 使用 NumPy 生成随机数
random_data np.random.normal(170, 10, 250)# 将数据转换为 Pandas DataFrame
dataframe pd.DataFrame(random_data)# 使用 Pandas hist() 方法绘制直方图
dataframe.hist()# 设置图表属性
plt.title(结合 Pandas绘制直方图)
plt.xlabel(X-Value)
plt.ylabel(Y-Value)# 显示图表
plt.show()Series 对象绘制直方图
除了数据框之外您还可以使用 Pandas 中的 Series 对象绘制直方图。只需将数据框中的列替换为 Series 对象即可。
实例
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt# 生成随机数据
data pd.Series(np.random.normal(size100))# 绘制直方图
# bins 参数指定了直方图中的柱子数量
plt.hist(data, bins10)# 设置图形标题和坐标轴标签
plt.title(Series 对象绘制直方图)
plt.xlabel(X-Values)
plt.ylabel(Y-Values)# 显示图形
plt.show()后记
今天学习的是Python Matplotlib 直方图学会了吗。 今天学习内容总结一下
绘制直方图结合 PandasSeries 对象绘制直方图