当前位置: 首页 > news >正文

市住房和城乡规划建设局网站什么nas可以做网站服务器

市住房和城乡规划建设局网站,什么nas可以做网站服务器,网站建设用什么软件有哪些,电销外呼软件文章目录 Pyramid Scene Parsing Network--CVPR#xff0c;2017一、背景介绍二、网络结构和优化方法三、实验结果 Pyramid Scene Parsing Network–CVPR#xff0c;2017 Github代码链接 一、背景介绍 现阶段随着数据集制作精细化、标签种类变多、具有语义相似标签等导致出… 文章目录 Pyramid Scene Parsing Network--CVPR2017一、背景介绍二、网络结构和优化方法三、实验结果 Pyramid Scene Parsing Network–CVPR2017 Github代码链接 一、背景介绍 现阶段随着数据集制作精细化、标签种类变多、具有语义相似标签等导致出现一些困难样本使得经典的语义分割网络无法很好的处理如FCN作者认为FCN缺乏合适的策略去利用全局场景类别线索这些困难样本。如下作者挑选了ADE20K数据集中几个具有代表性的困难样本第一行因为FCN没有正确捕获图像内容之间的关系错误的将外形和汽车相似的游艇识别为汽车要是能够正确识别出其在水面上就能够避免这种错误第二行是因为FCN没有捕获类别之间的关系导致遇到相似的类别如building和skyscraper这两类就无法正确区分第三行是因为类别代表的物体相对大小各有区别但FCN没有针对该问题进行处理导致和床纹理相似的枕头被错误识别成床。 总结这些观察结果许多错误部分或完全与不同感受野的上下文关系和全局信息相关。 提高模型感受野是解决该问题的切入点虽然通过理论分析ResNet获得的感受野比原图还大也就是能够感知全图但是通过实验发现CNN的感受野是小于理论分析的。 不少人提出用Global average pooling来提高模型感受野但是作者认为对于困难样本经过Global average pooling后的特征仅用一个特征向量来代表许多的物体类别会导致空间信息的丢失或者引起歧义。故作者认为可以对于局部区域进行全局平均池化就可以缓解该问题。 此外随着网络变得越来越深会带来优化困难这一问题。ResNet通过skip connection来缓解优化问题作者提出通过添加附加损失来辅助训练附加损失及其相关分支只在训练时使用测试时就会丢弃。 二、网络结构和优化方法 结构如上图所示从图上就能大致看出网络forward过程是什么样子。首先输入图片通过特征提取网络如ResNet等提取到特征X后这里作者为了扩大感受野使用的是包含空洞卷积的ResNetX特征为原图的1/8大小。之后X输入进作者提出的pyramid pooling module该模块分为四个分支通过AdaptiveAvgPool2d函数将特征X池化为1x1、2x2、3x3和6x6大小的4个特征。这四个特征分别对应不同尺度的特征比如1x1的表示全图。之后这4个特征通过卷积层减少网络通道数方便后面和特征X沿着通道维度拼接。在拼接前要将特征图的大小统一这里作者使用了线性插值法将4个特征上采样到和特征X大小一样的特征。之后通过卷积层获取最终的输出。 这里多说一嘴通常图片大小为256或者5121/8就是32或者64。这样看就大体知道作者为什么选择1、2、3、6了。 为了方便大家理解这里贴一下Pyramid Pooling Module的Pytorch代码 class PPM(nn.Module):def __init__(self, in_dim, reduction_dim, bins): #这里的in_dim就是特征X的通道数、reduction_dim就是获得的4个特征通过卷积层减少通道后的数量通常取in_dim/4。bins为列表表示通过AdaptiveAvgPool2d后获得的4个分支的特征大小。super(PPM, self).__init__()self.features []for bin in bins:self.features.append(nn.Sequential(nn.AdaptiveAvgPool2d(bin),nn.Conv2d(in_dim, reduction_dim, kernel_size1, biasFalse),nn.BatchNorm2d(reduction_dim),nn.ReLU(inplaceTrue)))self.features nn.ModuleList(self.features)def forward(self, x):x_size x.size()out [x]for f in self.features:out.append(F.interpolate(f(x), x_size[2:], modebilinear, align_cornersTrue))return torch.cat(out, 1)为了方便优化作者在ResNet网络上除了主损失函数loss1还添加了loss2。这里因为要使用loss2是一个有监督损失对应的标签为Ground Truth就必须添加单独的分支让获取到的特征能够和Ground Truth对应。作者使用了卷积层上采样构造这个分支。 三、实验结果 For a practical deep learning system, devil is always in the details. 实验结果在当时遥遥领先
http://www.huolong8.cn/news/18705/

相关文章:

  • 服务器做网站哪个系统好白云手机网站建设价格
  • 本地手机网站建设服务宝安沙井网站建设
  • 网站不公开简历做家教上虞建设局网站
  • 重庆网站建设价位网易博客 wordpress
  • 网站建设完整步骤深圳画册设计企业
  • dw做网站怎么换图片wordpress 微信接口
  • 仿制网站侵权行为做app网站的软件有哪些内容
  • 最好的网站模版上传网站主办者承诺书
  • 哈尔滨搭建网站知名的集团门户网站建设企业
  • 物流案例网站北京住房建设部官方网站
  • 东城网站设计成都网站建设公司兴田德润在哪儿
  • 软件技术学的是什么滁州seo优化
  • 北京城乡建设集团有限公司官网最优化方法
  • 网站备案号格式说明书深圳电子商务网站制作
  • 阿里巴巴国际站跨境电商平台苏州做商城网站
  • 网站开发后台做些什么域名解析过程
  • 优化网站和网站建设简单的品牌创意设计公司
  • 前端工程师是做网站西安网站建设托管
  • 中山骏域网站建设5年的室内设计师收入
  • 动易网站 首页模板修改宁波seo行业公司推荐
  • 学院网站规划方案网站制作 连云港
  • 郑州做网站哪里好镇江网站外包
  • 网站建设与管理维护的答案李建青湖州十大进出口公司
  • 做网站从哪里找货源为什么做网站会被批捕
  • 文章类网站选什么内容嘉兴定制型网站建设
  • 做地方的门户网站网站主页模板图片
  • 做网站费用是什么微信公共平台官网
  • 洪梅做网站知识库管理系统软件
  • 网站开发工程师薪资待遇律师事务所网站建设策划方案
  • 网页设计与网站建设考试名词解释河间网站网站建设