当前位置: 首页 > news >正文

一个正规的网站建设公司开发公司工程部奖励规定

一个正规的网站建设公司,开发公司工程部奖励规定,网站建设需要哪些工具,计算机最吃香的专业anolisos8.8安装显卡及cuda工具 一、目录 1、测试环境 2、安装显卡驱动 3、安装cuda工具 4、配置容器运行时 5、K8S集群安装nvidia插件 二、测试环境 操作系统#xff1a;Anolis OS 8.8 内核版本#xff1a;5.10.134-13.an8.x86_64 显卡安装版本#xff1a;525.147.05 c…anolisos8.8安装显卡及cuda工具 一、目录 1、测试环境 2、安装显卡驱动 3、安装cuda工具 4、配置容器运行时 5、K8S集群安装nvidia插件 二、测试环境 操作系统Anolis OS 8.8 内核版本5.10.134-13.an8.x86_64 显卡安装版本525.147.05 cuda版本V10.2.89 外网要求必须 三、安装显卡驱动 3.1、禁用nonveau [rootlocalhost ~]# wget https://ops-publicread-1257137142.cos.ap-beijing.myqcloud.com/shell/disable_nouveau.sh [rootlocalhost ~]# bash disable_nouveau.sh [rootlocalhost ~]# lsmod | grep nouveau #重启服务器再次进行检测 [rootlocalhost ~]# reboot [rootlocalhost ~]# lsmod | grep nouveau3.2、下载显卡驱动并安装 显卡下载地址https://www.nvidia.com/Download/Find.aspx?langen-us# 注根据显卡型号选择对应驱动进行下载 [rootlocalhost src]# lspci |grep NVIDIA 13:00.0 3D controller: NVIDIA Corporation TU104GL [Tesla T4] (rev a1) [rootlocalhost src]# wget https://us.download.nvidia.cn/tesla/525.147.05/NVIDIA-Linux-x86_64-525.147.05.run [rootlocalhost src]# bash NVIDIA-Linux-x86_64-525.147.05.run #根据提示进行安装如下则安装完成 检测 [rootlocalhost src]# nvidia-smi Tue Dec 12 10:16:35 2023 ----------------------------------------------------------------------------- | NVIDIA-SMI 525.147.05 Driver Version: 525.147.05 CUDA Version: 12.0 | |--------------------------------------------------------------------------- | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | | | | MIG M. | || | 0 Tesla T4 Off | 00000000:13:00.0 Off | 0 | | N/A 63C P0 30W / 70W | 2MiB / 15360MiB | 5% Default | | | | N/A | -------------------------------------------------------------------------------------------------------------------------------------------------------- | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | || | No running processes found | -----------------------------------------------------------------------------四、安装CUDA工具 4.1、官网下载指定版本CUDA https://developer.nvidia.com/cuda-toolkit-archive 4.2、安装CUDA [rootlocalhost src]# wget https://developer.download.nvidia.com/compute/cuda/10.2/Prod/local_installers/cuda_10.2.89_440.33.01_linux.run [rootlocalhost src]# sh cuda_10.2.89_440.33.01_linux.run #加载程序耗时3分钟 ————————————————————————————————————————————————————————————————————————————————— x End User License Agreement x x - x x x x x x Preface x x - x x x x The Software License Agreement in Chapter 1 and the Supplement x x in Chapter 2 contain license terms and conditions that govern x x the use of NVIDIA software. By accepting this agreement, you x x agree to comply with all the terms and conditions applicable x x to the product(s) included herein. x x x x x x NVIDIA Driver x x x x x x Description x x x x This package contains the operating system driver and x xq x x Do you accept the above EULA? (accept/decline/quit): x x accept x ————————————————————————————————————————————————————————————————————————————————— #输入accept回车 ————————————————————————————————————————————————————————————————————————————————— x CUDA Installer se Agreement x x - [ ] Driver x x [ ] 440.33.01 x x [X] CUDA Toolkit 10.2 x x [X] CUDA Samples 10.2 x x [X] CUDA Demo Suite 10.2 x x [X] CUDA Documentation 10.2 x x Options x x Install x x x x x x x x x x x x VIDIA Driver x x x x x x escription x x x x x x x x x Up/Down: Move | Left/Right: Expand | Enter: Select | A: Advanced options x ————————————————————————————————————————————————————————————————————————————————— #去掉显卡驱动选择install继续 4.3、设置cuda环境变量 [rootlocalhost ~]# echo export PATH/usr/local/cuda/bin:$PATH /etc/profile [rootlocalhost ~]# echo export LD_LIBRARY_PATH/usr/local/cuda/lib64:$LD_LIBRARY_PATH /etc/profile [rootlocalhost ~]# source /etc/profile [rootlocalhost ~]# nvcc --version nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2019 NVIDIA Corporation Built on Wed_Oct_23_19:24:38_PDT_2019 Cuda compilation tools, release 10.2, V10.2.89五、配置容器运行时 5.1、安装显卡容器运行时 #添加阿里docker-ce源 # step 1: 安装必要的一些系统工具 [rootlocalhost ~]# yum install -y yum-utils device-mapper-persistent-data lvm2 # Step 2: 添加软件源信息 [rootlocalhost ~]# yum-config-manager --add-repo https://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo # Step 3 [rootlocalhost ~]# sed -i sdownload.docker.commirrors.aliyun.com/docker-ce /etc/yum.repos.d/docker-ce.repo # Step 4: 更新并安装Docker-CE [rootlocalhost ~]# yum makecache # Step 5: 安装显卡容器运行时 [rootlocalhost ~]# yum -y install nvidia-docker25.2、配置containerd支持显卡 # Step1 : 安装containerd [rootlocalhost ~]# yum -y install containerd.io # Step2 生成默认配置 [rootlocalhost ~]# containerd config default /etc/containerd/config.toml # Step3 修改containerd配置 /etc/containerd/config.toml ############################################################### ...[plugins.io.containerd.grpc.v1.cri.containerd]snapshotter overlayfsdefault_runtime_name runcno_pivot false ...[plugins.io.containerd.grpc.v1.cri.containerd.runtimes][plugins.io.containerd.grpc.v1.cri.containerd.runtimes.runc]runtime_type io.containerd.runtime.v1.linux # 将此处 runtime_type 的值改成 io.containerd.runtime.v1.linux ...[plugins.io.containerd.runtime.v1.linux]shim containerd-shimruntime nvidia-container-runtime # 将此处 runtime 的值改成 nvidia-container-runtime ... ########################################################### # Step4 : 启动containerd [rootlocalhost ~]# systemctl start containerd systemctl enable containerd # Step5 : 跑测试容器测试 [rootlocalhost ~]# ctr image pull docker.io/nvidia/cuda:11.2.2-base-ubuntu20.04 [rootlocalhost ~]# ctr run --rm -t \--runc-binary/usr/bin/nvidia-container-runtime \--env NVIDIA_VISIBLE_DEVICESall \docker.io/nvidia/cuda:11.2.2-base-ubuntu20.04 \cuda-11.6.2-base-ubuntu20.04 nvidia-smi Tue Dec 12 03:01:10 2023 ----------------------------------------------------------------------------- | NVIDIA-SMI 525.147.05 Driver Version: 525.147.05 CUDA Version: 12.0 | |--------------------------------------------------------------------------- | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | | | | MIG M. | || | 0 Tesla T4 Off | 00000000:13:00.0 Off | 0 | | N/A 66C P0 30W / 70W | 2MiB / 15360MiB | 4% Default | | | | N/A | -------------------------------------------------------------------------------------------------------------------------------------------------------- | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | || | No running processes found | -----------------------------------------------------------------------------5.3、配置Docker支持显卡 # Step1 : 安装docker [rootlocalhost ~]# yum install docker-ce-23.0.6 -y # Step2 : 配置docker容器运行时并启动docker #修改cgroup驱动为systemd[k8s官方推荐]、限制容器日志量、修改存储类型 [rootlocalhost ~]# mkdir /etc/docker -p [rootlocalhost ~]# cat /etc/docker/daemon.json EOF {registry-mirrors: [https://tf72mndn.mirror.aliyuncs.com],exec-opts: [native.cgroupdriversystemd],log-opts: {max-file: 3,max-size: 500m},runtimes: {nvidia: {path: /usr/bin/nvidia-container-runtime,runtimeArgs: []}} } EOF [rootlocalhost ~]# systemctl daemon-reload [rootlocalhost ~]# systemctl restart docker [rootlocalhost ~]# systemctl enable docker # Step3 : 启动docker测试容器 [rootlocalhost ~]# docker run --runtimenvidia --rm nvidia/cuda:11.0-base nvidia-smi Unable to find image nvidia/cuda:11.0-base locally 11.0-base: Pulling from nvidia/cuda 54ee1f796a1e: Pull complete f7bfea53ad12: Pull complete 46d371e02073: Pull complete b66c17bbf772: Pull complete 3642f1a6dfb3: Pull complete e5ce55b8b4b9: Pull complete 155bc0332b0a: Pull complete Digest: sha256:774ca3d612de15213102c2dbbba55df44dc5cf9870ca2be6c6e9c627fa63d67a Status: Downloaded newer image for nvidia/cuda:11.0-base Tue Dec 12 03:10:32 2023 ----------------------------------------------------------------------------- | NVIDIA-SMI 525.147.05 Driver Version: 525.147.05 CUDA Version: 12.0 | |--------------------------------------------------------------------------- | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | | | | MIG M. | || | 0 Tesla T4 Off | 00000000:13:00.0 Off | 0 | | N/A 64C P0 30W / 70W | 2MiB / 15360MiB | 5% Default | | | | N/A | -------------------------------------------------------------------------------------------------------------------------------------------------------- | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | || | No running processes found | -----------------------------------------------------------------------------六、K8S集群安装nvidia插件 # Step1 : GPU主机打标签 [rootlocalhost ~]# kubectl label node node9 nvidia.comgpu # Step2 : K8S集群安装GPU驱动插件仅需要安装一次 [rootlocalhost ~]# kubectl apply -f https://raw.githubusercontent.com/NVIDIA/k8s-device-plugin/1.0.0-beta4/nvidia-device-plugin.yml # Step3 : 带GPU资源主机GPU资源信息 [rootlocalhost ~]# kubectl describe node node9 |grep gpugpu/typenvidianvidia.com/gpu: 1nvidia.com/gpu: 1nvidia.com/gpu 0 0 # Step4 : 部署使用GPU资源测试容器apiVersion: v1 kind: Pod metadata:name: cuda-vector-add spec:restartPolicy: OnFailurecontainers:- name: cuda-vector-add#image: k8s.gcr.io/cuda-vector-add:v0.1image: docker.io/nvidia/cuda:11.0.3-base-ubuntu20.04command:- nvidia-smiresources:limits:nvidia.com/gpu: 1其他disable_nouveau.sh 脚本内容 #!/bin/bash echo -e \033[32m更新系统内核请耐心等待\033[0m yum -y install gcc make elfutils-libelf-devel libglvnd-devel kernel-devel epel-release yum -y install dkms rm -f /etc/modprobe.d/blacklist-nvidia-nouveau.conf /etc/modprobe.d/nvidia-unsupported-gpu.conf echo blacklist nouveau | tee /etc/modprobe.d/blacklist-nvidia-nouveau.conf \ echo options nouveau modeset0 | tee -a /etc/modprobe.d/blacklist-nvidia-nouveau.conf \ echo options nvidia NVreg_OpenRmEnableUnsupportedGpus1 | tee /etc/modprobe.d/nvidia-unsupported-gpu.conf mv /boot/initramfs-$(uname -r).img /boot/initramfs-$(uname -r)-nouveau.img dracut /boot/initramfs-$(uname -r).img $(uname -r)
http://www.huolong8.cn/news/138535/

相关文章:

  • 淘宝客网站做seo有用吗东营seo网站推广
  • 不备案的网站很慢网站建设与管理 情况总结
  • 合肥建设有限公司网站建设优化服务如何
  • 如何检测网站死链给人做网站的
  • 网站不在首页显示出来吗哪个公司做网站专业
  • 住房建设部官方网站常见服务器
  • 珠海门户网站建设价格吉林网站建设司
  • 深圳市找工作直招郑州seo教程
  • 做游戏CG分享的网站粤icp备网站建设 中企动力广州
  • 四川省建设厅网站打不开建筑网站 知乎
  • 网站设计青岛wordpress手机单页面
  • 泉州做 php 网站怎么做网站中英文版本
  • 怎么查网站有没有做404报告总结网站建设实验
  • 加盟营销型网站制作网站建设技术服务合同
  • 知道一个网站怎么知道是谁做的百度优化网站宽带值多少合适
  • 沈阳网站建设优化企业网络seo排名
  • 江门网站免费制作重庆信息网官网
  • 企业建设电子商务网站的预期收益美妆网站开发规划书
  • 外国手机网站设计品牌设计logo
  • 织梦网站404怎么做视频网站设计与开发
  • seo网站推广怎么做网站出现的的问题
  • 教育培训推广网站模板ps工具设计网站
  • 门户网站开发是什么外贸营销网站建站
  • 地方信息网站源码怎么查网站是用什么语言做的
  • 门户网站要求黑白灰 网站
  • 网站建设 牛商网技术提供泰安做网站建设的公司
  • 仿中国化妆品网站模板站长之家网址ip查询
  • 购物网站域名大小邓州微网站建设
  • 简述建站流程黄冈市网站建设
  • 小学英语教师做应用相关网站网站项目策划大纲