广州网站排名优化价格,wordpress 占用cpu,wordpress内容页标签函数,php做电商网站排序算法很多地方都会用到#xff0c;近期又重新看了一遍算法#xff0c;并自己简单地实现了一遍#xff0c;特此记录下来#xff0c;为以后复习留点材料。废话不多说#xff0c;下面逐一看看经典的排序算法#xff1a;1. 选择排序选择排序的基本思想是遍历数组的过程中近期又重新看了一遍算法并自己简单地实现了一遍特此记录下来为以后复习留点材料。废话不多说下面逐一看看经典的排序算法1. 选择排序选择排序的基本思想是遍历数组的过程中以 i 代表当前需要排序的序号则需要在剩余的 [i…n-1] 中找出其中的最小值然后将找到的最小值与 i 指向的值进行交换。因为每一趟确定元素的过程中都会有一个选择最大值的子流程所以人们形象地称之为选择排序。举个实例来看看初始 [38, 17, 16, 16, 7, 31, 39, 32, 2, 11]i 0: [2 , 17, 16, 16, 7, 31, 39, 32, 38 , 11] (0th [38]8th [2])i 1: [2, 7 , 16, 16, 17 , 31, 39, 32, 38, 11] (1st [38]4th [17])i 2: [2, 7, 11 , 16, 17, 31, 39, 32, 38, 16 ] (2nd [11]9th [16])i 3: [2, 7, 11, 16, 17, 31, 39, 32, 38, 16] ( 无需交换 )i 4: [2, 7, 11, 16, 16 , 31, 39, 32, 38, 17 ] (4th [17]9th [16])i 5: [2, 7, 11, 16, 16, 17 , 39, 32, 38, 31 ] (5th [31]9th [17])i 6: [2, 7, 11, 16, 16, 17, 31 , 32, 38, 39 ] (6th [39]9th [31])i 7: [2, 7, 11, 16, 16, 17, 31, 32, 38, 39] ( 无需交换 )i 8: [2, 7, 11, 16, 16, 17, 31, 32, 38, 39] ( 无需交换 )i 9: [2, 7, 11, 16, 16, 17, 31, 32, 38, 39] ( 无需交换 )由例子可以看出选择排序随着排序的进行( i 逐渐增大)比较的次数会越来越少但是不论数组初始是否有序选择排序都会从 i 至数组末尾进行一次选择比较所以给定长度的数组选择排序的比较次数是固定的 1 2 3 …. n n * (n 1) / 2 而交换的次数则跟初始数组的顺序有关如果初始数组顺序为随机则在最坏情况下数组元素将会交换 n 次最好的情况下则可能 0 次(数组本身即为有序)。由此可以推出选择排序的时间复杂度和空间复杂度分别为 O(n2 ) 和 O(1) (选择排序只需要一个额外空间用于数组元素交换)。实现代码/*** Selection Sorting*/SELECTION(new Sortable() {public void sort(T[] array, boolean ascend) {int len array.length;for (int i 0; i len; i) {int selected i;for (int j i 1; j len; j) {int compare array[j].compareTo(array[selected]);if (compare ! 0 compare 0 ascend) {selected j;}}exchange(array, i, selected);}}})2. 插入排序插入排序的基本思想是在遍历数组的过程中假设在序号 i 之前的元素即 [0..i-1] 都已经排好序本趟需要找到 i 对应的元素 x 的正确位置 k 并且在寻找这个位置 k 的过程中逐个将比较过的元素往后移一位为元素 x “腾位置”最后将 k 对应的元素值赋为 x 插入排序也是根据排序的特性来命名的。以下是一个实例红色 标记的数字为插入的数字被划掉的数字是未参与此次排序的元素红色 标记的数字与被划掉数字之间的元素为逐个向后移动的元素比如第二趟参与排序的元素为 [11, 31, 12] 需要插入的元素为 12 但是 12 当前并没有处于正确的位置于是我们需要依次与前面的元素 31 、 11 做比较一边比较一边移动比较过的元素直到找到第一个比 12 小的元素 11 时停止比较此时 31 对应的索引 1 则是 12 需要插入的位置。初始 [11, 31, 12, 5, 34, 30, 26, 38, 36, 18]第一趟 [11, 31 , 12, 5, 34, 30, 26, 38, 36, 18] (无移动的元素)第二趟 [11, 12 , 31, 5, 34, 30, 26, 38, 36, 18] ( 31 向后移动)第三趟 [5 , 11, 12, 31, 34, 30, 26, 38, 36, 18] ( 11, 12, 31 皆向后移动)第四趟 [5, 11, 12, 31, 34 , 30, 26, 38, 36, 18] (无移动的元素)第五趟 [5, 11, 12, 30 , 31, 34, 26, 38, 36, 18] ( 31, 34 向后移动)第六趟 [5, 11, 12, 26 , 30, 31, 34, 38, 36, 18] ( 30, 31, 34 向后移动)第七趟 [5, 11, 12, 26, 30, 31, 34, 38 , 36, 18] (无移动的元素)第八趟 [5, 11, 12, 26, 30, 31, 34, 36 , 38, 18] ( 38 向后移动)第九趟 [5, 11, 12, 18 , 26, 30, 31, 34, 36, 38] ( 26, 30, 31, 34, 36, 38 向后移动)插入排序会优于选择排序理由是它在排序过程中能够利用前部分数组元素已经排好序的一个优势有效地减少一些比较的次数当然这种优势得看数组的初始顺序如何最坏的情况下(给定的数组恰好为倒序)插入排序需要比较和移动的次数将会等于 1 2 3… n n * (n 1) / 2 这种极端情况下插入排序的效率甚至比选择排序更差。因此插入排序是一个不稳定的排序方法插入效率与数组初始顺序息息相关。一般情况下插入排序的时间复杂度和空间复杂度分别为 O(n2 ) 和 O(1) 。实现代码/*** Insertion Sorting*/INSERTION(new Sortable() {public void sort(T[] array, boolean ascend) {int len array.length;for (int i 1; i len; i) {T toInsert array[i];int j i;for (; j 0; j–) {int compare array[j - 1].compareTo(toInsert);if (compare 0 || compare 0 ascend) {break;}array[j] array[j - 1];}array[j] toInsert;}}})3. 冒泡排序冒泡排序可以算是最经典的排序算法了记得小弟上学时最先接触的也就是这个算法了因为实现方法最简单两层 for 循环里层循环中判断相邻两个元素是否逆序是的话将两个元素交换外层循环一次就能将数组中剩下的元素中最小的元素“浮”到最前面所以称之为冒泡排序。照例举个简单的实例吧初始状态 [24, 19, 26, 39, 36, 7, 31, 29, 38, 23]内层第一趟 [24, 19, 26, 39, 36, 7, 31, 29, 23 , 38 ] ( 9th [23]8th [38 )内层第二趟 [24, 19, 26, 39, 36, 7, 31, 23 , 29 , 38] ( 8th [23]7th [29] )内层第三趟 [24, 19, 26, 39, 36, 7, 23 , 31 , 29, 38] ( 7th [23]6th [31] )内层第四趟 [24, 19, 26, 39, 36, 7, 23, 31, 29, 38] ( 7 、 23 都位于正确的顺序无需交换)内层第五趟 [24, 19, 26, 39, 7 , 36 , 23, 31, 29, 38] ( 5th [7]4th [36] )内层第六趟 [24, 19, 26, 7 , 39 , 36, 23, 31, 29, 38] ( 4th [7]3rd [39] )内层第七趟 [24, 19, 7 , 26 , 39, 36, 23, 31, 29, 38] ( 3rd [7]2nd [26] )内层第八趟 [24, 7 , 19 , 26, 39, 36, 23, 31, 29, 38] ( 2nd [7]1st [19] )内层第九趟 [7 , 24 , 19, 26, 39, 36, 23, 31, 29, 38] ( 1st [7]0th [24] )……… .其实冒泡排序跟选择排序比较相像比较次数一样都为 n * (n 1) / 2 但是冒泡排序在挑选最小值的过程中会进行额外的交换(冒泡排序在排序中只要发现相邻元素的顺序不对就会进行交换与之对应的是选择排序只会在内层循环比较结束之后根据情况决定是否进行交换)所以在我看来选择排序属于冒泡排序的改进版。实现代码/*** Bubble Sorting, its very similar with Insertion Sorting*/BUBBLE(new Sortable() {public void sort(T[] array, boolean ascend) {int length array.length;int lastExchangedIdx 0;for (int i 0; i length; i) {// mark the flag to identity whether exchange happened to falseboolean isExchanged false;// last compare and exchange happened before reaching index iint currOrderedIdx lastExchangedIdx i ? lastExchangedIdx : i;for (int j length – 1; j currOrderedIdx; j–) {int compare array[j - 1].compareTo(array[j]);if (compare ! 0 compare 0 ascend) {exchange(array, j – 1, j);isExchanged true;lastExchangedIdx j;}}// if no exchange happen means array is already in orderif (isExchanged false) {break;}}}})4. 希尔排序希尔排序的诞生是由于插入排序在处理大规模数组的时候会遇到需要移动太多元素的问题。希尔排序的思想是将一个大的数组“分而治之”划分为若干个小的数组以 gap 来划分比如数组 [1, 2, 3, 4, 5, 6, 7, 8] 如果以 gap 2 来划分可以分为 [1, 3, 5, 7] 和 [2, 4, 6, 8] 两个数组(对应的如 gap 3 则划分的数组为 [1, 4, 7] 、 [2, 5, 8] 、 [3, 6] )然后分别对划分出来的数组进行插入排序待各个子数组排序完毕之后再减小 gap 值重复进行之前的步骤直至 gap 1 即对整个数组进行插入排序此时的数组已经基本上快排好序了所以需要移动的元素会很小很小解决了插入排序在处理大规模数组时较多移动次数的问题。具体实例请参照插入排序。希尔排序是插入排序的改进版在数据量大的时候对效率的提升帮助很大数据量小的时候建议直接使用插入排序就好了。实现代码/*** Shell Sorting*/SHELL(new Sortable() {public void sort(T[] array, boolean ascend) {int length array.length;int gap 1;// use the most next to length / 3 as the first gapwhile (gap length / 3) {gap gap * 3 1;}while (gap 1) {for (int i gap; i length; i) {T next array[i];int j i;while (j gap) {int compare array[j - gap].compareTo(next);// already find its positionif (compare 0 || compare 0 ascend) {break;}array[j] array[j - gap];j - gap;}if (j ! i) {array[j] next;}}gap / 3;}}})5. 归并排序归并排序采用的是递归来实现属于“分而治之”将目标数组从中间一分为二之后分别对这两个数组进行排序排序完毕之后再将排好序的两个数组“归并”到一起归并排序最重要的也就是这个“归并”的过程归并的过程中需要额外的跟需要归并的两个数组长度一致的空间比如需要规定的数组分别为 [3, 6, 8, 11] 和 [1, 3, 12, 15] (虽然逻辑上被划为为两个数组但实际上这些元素还是位于原来数组中的只是通过一些 index 将其划分成两个数组原数组为 [3, 6, 8, 11, 1, 3, 12, 15 我们设置三个指针 lo, mid, high 分别为 0,3,7 就可以实现逻辑上的子数组划分)那么需要的额外数组的长度为 4 4 8 。归并的过程可以简要地概括为如下1) 将两个子数组中的元素复制到新数组 copiedArray 中以前面提到的例子为例则 copiedArray [3, 6, 8, 11, 1, 3, 12, 15] 2) 设置两个指针分别指向原子数组中对应的第一个元素假定这两个指针取名为 leftIdx 和 rightIdx 则 leftIdx 0 (对应 copiedArray 中的第一个元素 [3] ) rightIdx 4 (对应 copiedArray 中的第五个元素 [1] )3) 比较 leftIdx 和 rightIdx 指向的数组元素值选取其中较小的一个并将其值赋给原数组中对应的位置 i 赋值完毕后分别对参与赋值的这两个索引做自增 1 操作如果 leftIdx 或 rigthIdx 值已经达到对应数组的末尾则余下只需要将剩下数组的元素按顺序 copy 到余下的位置即可。下面给个归并的具体实例第一趟辅助数组 [21 , 28, 39 | 35, 38] (数组被拆分为左右两个子数组以 | 分隔开)[21 , , , , ] (第一次 21 与 35 比较 , 左边子数组胜出 leftIdx 0 i 0 )第二趟辅助数组 [21, 28 , 39 | 35, 38][21 , 28, , , ] (第二次 28 与 35 比较左边子数组胜出 leftIdx 1 i 1 )第三趟 [21, 28, 39 | 35 , 38][21 , 28 , 35, , ] (第三次 39 与 35 比较右边子数组胜出 rightIdx 0 i 2 )第四趟 [21, 28, 39 | 35, 38 ][21 , 28 , 35 , 38, ] (第四次 39 与 38 比较右边子数组胜出 rightIdx 1 i 3 )第五趟 [21, 28, 39 | 35, 38][21 , 28 , 35 , 38 , 39] (第五次时右边子数组已复制完无需比较 leftIdx 2 i 4 )以上便是一次归并的过程我们可以将整个需要排序的数组做有限次拆分(每次一分为二)直到分为长度为 1 的小数组为止长度为 1 时数组已经不用排序了。在这之后再逆序(由于采用递归)依次对这些数组进行归并操作直到最后一次归并长度为 n / 2 的子数组归并完成之后数组排序也完成。归并排序需要的额外空间是所有排序中最多的每次归并需要与参与归并的两个数组长度之和相同个元素(为了提供辅助数组)。则可以推断归并排序的空间复杂度为 1 2 4 … n n * ( n 2) / 4 (忽略了 n 的奇偶性的判断)时间复杂度比较难估这里小弟也忘记是多少了(囧)。实现代码/*** Merge sorting*/MERGE(new Sortable() {public void sort(T[] array, boolean ascend) {this.sort(array, 0, array.length – 1, ascend);}private void sort(T[] array, int lo, int hi, boolean ascend) {// OPTIMIZE ONE// if the substrings length is less than 20,// use insertion sort to reduce recursive invocationif (hi – lo 20) {for (int i lo 1; i hi; i) {T toInsert array[i];int j i;for (; j lo; j–) {int compare array[j - 1].compareTo(toInsert);if (compare 0 || compare 0 ascend) {break;}array[j] array[j - 1];}array[j] toInsert;}return;}int mid lo (hi – lo) / 2;sort(array, lo, mid, ascend);sort(array, mid 1, hi, ascend);merge(array, lo, mid, hi, ascend);}private void merge(T[] array, int lo, int mid, int hi, boolean ascend) {// OPTIMIZE TWO// if it is already in right order, skip this merge// since theres no need to do soint leftEndCompareToRigthStart array[mid].compareTo(array[mid 1]);if (leftEndCompareToRigthStart 0 || leftEndCompareToRigthStart 0 ascend) {return;}SuppressWarnings(unchecked)T[] arrayCopy (T[]) new Comparable[hi - lo 1];System.arraycopy(array, lo, arrayCopy, 0, arrayCopy.length);int lowIdx 0;int highIdx mid – lo 1;for (int i lo; i hi; i) {if (lowIdx mid – lo) {// left sub array exhaustedarray[i] arrayCopy[highIdx];} else if (highIdx hi – lo) {// right sub array exhaustedarray[i] arrayCopy[lowIdx];} else if (arrayCopy[lowIdx].compareTo(arrayCopy[highIdx]) 0 ascend) {array[i] arrayCopy[lowIdx];} else {array[i] arrayCopy[highIdx];}}}})6. 快速排序快速排序也是用归并方法实现的一个“分而治之”的排序算法它的魅力之处在于它能在每次 partition (排序算法的核心所在)都能为一个数组元素确定其排序最终正确位置(一次就定位准下次循环就不考虑这个元素了)。