当前位置: 首页 > news >正文

商贸城网站建设方案photoshop怎么做网站

商贸城网站建设方案,photoshop怎么做网站,建设网站查询密码,苏州网址支持向量机#xff1a; 超平面#xff1a;比数据空间少一个维度#xff0c;为了将数据进行切分#xff0c;分为不同的类别#xff0c;决策边界是超平面的一种 决策边界#xff1a;就是再二分类问题中#xff0c;找到一个超平面#xff0c;将数据分为两类#xff0c;最…支持向量机 超平面比数据空间少一个维度为了将数据进行切分分为不同的类别决策边界是超平面的一种 决策边界就是再二分类问题中找到一个超平面将数据分为两类最合适的超平面就叫做决策边界当现有的数据难以二分类需要对数据进行升维将数据映射到高一维度便于进行区分比如说二维平面难以区分就升维三维进行区分 需要用到的api在sklearn中需要用到的参数有linearpolysigmoidrbf 导包import sklearn.datasets as datasetsfrom sklearn.model_selection import train_test_splitfrom sklearn.metrics import f1_score#用来评价预测的结果准确率 需要对svc的参数kernel进行设置kernelrbfkernelpolykernellinearkernelsigmoid代表四种分类模式实现如下 from sklearn.svm import SVC import sklearn.datasets as datasets from sklearn.model_selection import train_test_split from sklearn.metrics import f1_score dt datasets.load_breast_cancer() # print(dt) feature dt[data] target dt[target] x_train,x_test,y_train,y_test train_test_split(feature,target,train_size0.5,random_state2023) # 建立不同方式的svc s1 SVC(kernelrbf).fit(x_train,y_train) s2 SVC(kernelpoly).fit(x_train,y_train) s3 SVC(kernellinear).fit(x_train,y_train) s4 SVC(kernelsigmoid).fit(x_train, y_train) print(rbf的预测精度,f1_score(y_test, s1.predict(x_test))) print(poly的预测精度,f1_score(y_test, s2.predict(x_test))) print(linear的预测精度,f1_score(y_test, s3.predict(x_test))) print(sigmoid的预测精度,f1_score(y_test, s4.predict(x_test)))输出结果 {data: array([[1.799e01, 1.038e01, 1.228e02, ..., 2.654e-01, 4.601e-01,1.189e-01],[2.057e01, 1.777e01, 1.329e02, ..., 1.860e-01, 2.750e-01,8.902e-02],[1.969e01, 2.125e01, 1.300e02, ..., 2.430e-01, 3.613e-01,8.758e-02],...,[1.660e01, 2.808e01, 1.083e02, ..., 1.418e-01, 2.218e-01,7.820e-02],[2.060e01, 2.933e01, 1.401e02, ..., 2.650e-01, 4.087e-01,1.240e-01],[7.760e00, 2.454e01, 4.792e01, ..., 0.000e00, 2.871e-01,7.039e-02]]), target: array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0,1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0,1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1,1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0,0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1,1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1,1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0,0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0,1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1,1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0,0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0,0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0,1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1,1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1,1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0,1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1,1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1]), frame: None, target_names: array([malignant, benign], dtypeU9), DESCR: .. _breast_cancer_dataset:\n\nBreast cancer wisconsin (diagnostic) dataset\n--------------------------------------------\n\n**Data Set Characteristics:**\n\n :Number of Instances: 569\n\n :Number of Attributes: 30 numeric, predictive attributes and the class\n\n :Attribute Information:\n - radius (mean of distances from center to points on the perimeter)\n - texture (standard deviation of gray-scale values)\n - perimeter\n - area\n - smoothness (local variation in radius lengths)\n - compactness (perimeter^2 / area - 1.0)\n - concavity (severity of concave portions of the contour)\n - concave points (number of concave portions of the contour)\n - symmetry\n - fractal dimension (coastline approximation - 1)\n\n The mean, standard error, and worst or largest (mean of the three\n worst/largest values) of these features were computed for each image,\n resulting in 30 features. For instance, field 0 is Mean Radius, field\n 10 is Radius SE, field 20 is Worst Radius.\n\n - class:\n - WDBC-Malignant\n - WDBC-Benign\n\n :Summary Statistics:\n\n \n Min Max\n \n radius (mean): 6.981 28.11\n texture (mean): 9.71 39.28\n perimeter (mean): 43.79 188.5\n area (mean): 143.5 2501.0\n smoothness (mean): 0.053 0.163\n compactness (mean): 0.019 0.345\n concavity (mean): 0.0 0.427\n concave points (mean): 0.0 0.201\n symmetry (mean): 0.106 0.304\n fractal dimension (mean): 0.05 0.097\n radius (standard error): 0.112 2.873\n texture (standard error): 0.36 4.885\n perimeter (standard error): 0.757 21.98\n area (standard error): 6.802 542.2\n smoothness (standard error): 0.002 0.031\n compactness (standard error): 0.002 0.135\n concavity (standard error): 0.0 0.396\n concave points (standard error): 0.0 0.053\n symmetry (standard error): 0.008 0.079\n fractal dimension (standard error): 0.001 0.03\n radius (worst): 7.93 36.04\n texture (worst): 12.02 49.54\n perimeter (worst): 50.41 251.2\n area (worst): 185.2 4254.0\n smoothness (worst): 0.071 0.223\n compactness (worst): 0.027 1.058\n concavity (worst): 0.0 1.252\n concave points (worst): 0.0 0.291\n symmetry (worst): 0.156 0.664\n fractal dimension (worst): 0.055 0.208\n \n\n :Missing Attribute Values: None\n\n :Class Distribution: 212 - Malignant, 357 - Benign\n\n :Creator: Dr. William H. Wolberg, W. Nick Street, Olvi L. Mangasarian\n\n :Donor: Nick Street\n\n :Date: November, 1995\n\nThis is a copy of UCI ML Breast Cancer Wisconsin (Diagnostic) datasets.\nhttps://goo.gl/U2Uwz2\n\nFeatures are computed from a digitized image of a fine needle\naspirate (FNA) of a breast mass. They describe\ncharacteristics of the cell nuclei present in the image.\n\nSeparating plane described above was obtained using\nMultisurface Method-Tree (MSM-T) [K. P. Bennett, Decision Tree\nConstruction Via Linear Programming. Proceedings of the 4th\nMidwest Artificial Intelligence and Cognitive Science Society,\npp. 97-101, 1992], a classification method which uses linear\nprogramming to construct a decision tree. Relevant features\nwere selected using an exhaustive search in the space of 1-4\nfeatures and 1-3 separating planes.\n\nThe actual linear program used to obtain the separating plane\nin the 3-dimensional space is that described in:\n[K. P. Bennett and O. L. Mangasarian: Robust Linear\nProgramming Discrimination of Two Linearly Inseparable Sets,\nOptimization Methods and Software 1, 1992, 23-34].\n\nThis database is also available through the UW CS ftp server:\n\nftp ftp.cs.wisc.edu\ncd math-prog/cpo-dataset/machine-learn/WDBC/\n\n.. topic:: References\n\n - W.N. Street, W.H. Wolberg and O.L. Mangasarian. Nuclear feature extraction \n for breast tumor diagnosis. IST/SPIE 1993 International Symposium on \n Electronic Imaging: Science and Technology, volume 1905, pages 861-870,\n San Jose, CA, 1993.\n - O.L. Mangasarian, W.N. Street and W.H. Wolberg. Breast cancer diagnosis and \n prognosis via linear programming. Operations Research, 43(4), pages 570-577, \n July-August 1995.\n - W.H. Wolberg, W.N. Street, and O.L. Mangasarian. Machine learning techniques\n to diagnose breast cancer from fine-needle aspirates. Cancer Letters 77 (1994) \n 163-171., feature_names: array([mean radius, mean texture, mean perimeter, mean area,mean smoothness, mean compactness, mean concavity,mean concave points, mean symmetry, mean fractal dimension,radius error, texture error, perimeter error, area error,smoothness error, compactness error, concavity error,concave points error, symmetry error,fractal dimension error, worst radius, worst texture,worst perimeter, worst area, worst smoothness,worst compactness, worst concavity, worst concave points,worst symmetry, worst fractal dimension], dtypeU23), filename: breast_cancer.csv, data_module: sklearn.datasets.data} rbf的预测精度 0.9451697127937337 poly的预测精度 0.9405684754521964 linear的预测精度 0.9621621621621622 sigmoid的预测精度 0.5898123324396783Process finished with exit code 0得出sigmoid分类后结果很差 对数据进行处理归一化处理后在进行分类 from sklearn.svm import SVC import sklearn.datasets as datasets from sklearn.model_selection import train_test_split from sklearn.metrics import f1_score from sklearn.preprocessing import MinMaxScaler dt datasets.load_breast_cancer() # print(dt) feature dt[data] target dt[target] # x_train,x_test,y_train,y_test train_test_split(feature,target,train_size0.5,random_state2023) # # 建立不同方式的svc # s1 SVC(kernelrbf).fit(x_train,y_train) # s2 SVC(kernelpoly).fit(x_train,y_train) # s3 SVC(kernellinear).fit(x_train,y_train) # s4 SVC(kernelsigmoid).fit(x_train, y_train) # print(rbf的预测精度,f1_score(y_test, s1.predict(x_test))) # print(poly的预测精度,f1_score(y_test, s2.predict(x_test))) # print(linear的预测精度,f1_score(y_test, s3.predict(x_test))) # print(sigmoid的预测精度,f1_score(y_test, s4.predict(x_test))) MM MinMaxScaler() n_feature MM.fit_transform(feature) x_train,x_test,y_train,y_test train_test_split(n_feature,target,train_size0.5,random_state2023) # 建立不同方式的svc s1 SVC(kernelrbf).fit(x_train,y_train) s2 SVC(kernelpoly).fit(x_train,y_train) s3 SVC(kernellinear).fit(x_train,y_train) s4 SVC(kernelsigmoid).fit(x_train, y_train) print(rbf的预测精度,f1_score(y_test, s1.predict(x_test))) print(poly的预测精度,f1_score(y_test, s2.predict(x_test))) print(linear的预测精度,f1_score(y_test, s3.predict(x_test))) print(sigmoid的预测精度,f1_score(y_test, s4.predict(x_test)))输出结果 rbf的预测精度 0.9837837837837838 poly的预测精度 0.978494623655914 linear的预测精度 0.9814323607427056 sigmoid的预测精度 0.464864864864864我们会发现除了sigmoid都提升了准确性rbf不擅长处理数据分布不均匀的情况。
http://www.yutouwan.com/news/217387/

相关文章:

  • 手机网站实例建设通官网入口
  • 网站建设狼盾网络ps培训机构排名
  • 隆昌网站建设项城网站建设
  • 唐山长城网站建设梅州网站建设
  • 哪里可以做网站优化简洁大气的网站设计
  • 网站服务器放置地建设银行义乌分行网站
  • 重庆网站建设公司价钱证书查询甘肃建设网站
  • 好习惯网站企业网站管理系统登录
  • 南京中建乡旅建设投资有限公司网站模板网站制作时间
  • 高端网站设计公司新鸿儒做网站需要买什么东西
  • 东莞网站推广哪些网站建站哪个品牌好
  • html5 网站开发语言襄阳做网站比较有实力的公司
  • 海口网站建设在线辽宁网络推广公司
  • 企业网站需要什么功能制作网页教程的步骤
  • 如何建设企业微网站网上的彩票网站是怎么做的
  • 淄博网站设ip钓鱼网站在线生成
  • 什么网站建设最简单网站设计技术入股
  • 校园网站建设申请西安市社交网站制作公司
  • 网站建设私单铁岭做网站
  • 北京网站优化推广效果注册公司在哪个网站系统
  • 大庆网站建设大庆合肥企业网站推广
  • 自己做的网站怎么才有用户访问廊坊建设网站企业
  • 网站建设各部门职责策划电力建设期刊网站投稿
  • 黄山网站网站建设网站建设 数据分析
  • 移动网可以上的网站是什么样子的企业经营沙盘seo优化
  • 最新仿58同城网站源码最新的域名网站
  • 郑州网站建设喝彩科技网站的功能包括哪些
  • 网站 icp备案购物网页代码
  • 来宾住房和城乡建设网站中国10大品牌装修公司
  • 网站建设和维护工作网站开发 设置背景图片