当前位置: 首页 > news >正文

辽宁丹东建设厅网站广州市天河区住房和建设局网站

辽宁丹东建设厅网站,广州市天河区住房和建设局网站,北京公司注册流程及需要的材料,wordpress 做问卷文章目录 扩散模型学习笔记1. 扩散模型库Diffusers1.1 安装1.2 使用 2. 从零开始搭建扩散模型2.1 数据准备2.2 损坏过程2.3 模型构建2.4 模型训练2.5 采样 3. webui 扩散模型学习笔记 1. 扩散模型库Diffusers 1.1 安装 由于diffusers库更新较快#xff0c;所以建议时常upgr… 文章目录 扩散模型学习笔记1. 扩散模型库Diffusers1.1 安装1.2 使用 2. 从零开始搭建扩散模型2.1 数据准备2.2 损坏过程2.3 模型构建2.4 模型训练2.5 采样 3. webui 扩散模型学习笔记 1. 扩散模型库Diffusers 1.1 安装 由于diffusers库更新较快所以建议时常upgrade。 # pip pip install --upgrade diffusers[torch] # conda conda install -c conda-forge diffusers1.2 使用 from diffusers import DiffusionPipelinegenerator DiffusionPipeline.from_pretrained(runwayml/stable-diffusion-v1-5, use_safetensorsTrue) generator.to(cuda) image generator(An image of a squirrel in Picasso style).images[0] image.save(image_of_squirrel_painting.png)2. 从零开始搭建扩散模型 2.1 数据准备 在这个示例中我们将使用经典的MNIST数据集作为示范。MNIST数据集包含28x28像素的手写数字图像每个像素值的范围从0到1。 2.2 损坏过程 我们希望能够控制输入数据的损坏程度因此引入了一个参数 amount该参数控制了噪声的程度。你可以使用以下方法来添加噪声 noise torch.rand_like(x) noisy_x (1 - amount) * x amount * noise如果 amount 为0则输入数据保持不变。如果 amount 为1输入数据将变为纯粹的噪声。通过混合输入数据和噪声我们可以确保输出数据的范围仍在0到1之间。 2.3 模型构建 我们将使用UNet模型来处理噪声图像。UNet是一种用于图像分割的常见架构由压缩路径和扩展路径组成。在这个示范中我们将构建一个简化版本的UNet它接收单通道图像并通过卷积层在下行路径down_layers和上行路径up_layers之间具有残差连接。我们将使用最大池化进行下采样和 nn.Upsample 进行上采样。 2.4 模型训练 在模型训练过程中模型的任务是将损坏的输入 noisy_x 转换为对原始图像 x 的最佳估计。我们使用均方误差MSE来比较模型的预测与真实值然后使用反向传播算法来更新模型的参数。 2.5 采样 如果模型在高噪声水平下的预测不够理想可以进行采样以生成更好的图像。你可以从完全随机的噪声图像开始然后逐渐接近模型的预测。这意味着你可以检查模型的预测结果然后只向预测的方向移动一小步比如向预测值移动20%。这将生成一个具有较少噪声的图像其中可能包含一些关于输入数据的结构提示。将这个新图像输入模型希望得到比第一个预测更好的结果。这个过程可以迭代多次以逐渐减小噪声并生成更好的图像。 这是一个简化的扩散模型搭建和训练的概述。你可以根据具体的问题和数据进行修改和优化以获得更好的结果。希望这些步骤能帮助你理解如何搭建扩散模型并训练它。 from diffusers import DDPMScheduler, UNet2DModel from PIL import Image import torch import numpy as npscheduler DDPMScheduler.from_pretrained(google/ddpm-cat-256) model UNet2DModel.from_pretrained(google/ddpm-cat-256).to(cuda) scheduler.set_timesteps(50)sample_size model.config.sample_size noise torch.randn((1, 3, sample_size, sample_size)).to(cuda) input noisefor t in scheduler.timesteps:with torch.no_grad():noisy_residual model(input, t).sampleprev_noisy_sample scheduler.step(noisy_residual, t, input).prev_sampleinput prev_noisy_sampleimage (input / 2 0.5).clamp(0, 1) image image.cpu().permute(0, 2, 3, 1).numpy()[0] image Image.fromarray((image * 255).round().astype(uint8)) image3. webui 参考我的另一篇博客https://blog.csdn.net/qq_44824148/article/details/130389357
http://www.yutouwan.com/news/51856/

相关文章:

  • 人人车网站建设在线制作头像文字图片
  • 怎么建网站 做app软件云端设计高端网站建设
  • 做视频网站需要执照吗搜索推广和场景推广
  • 网站开发与管理实验五python培训机构
  • 网站做好后怎么更新内容图文广告公司名称
  • .电子商务网站规划俄语 俄文 俄罗斯语外贸网站建设
  • 全国知名品牌策划公司汽车seo是什么意思
  • 百度 如何 关键字 网站域名 关联网站建设设计制作方案与价格
  • 河南鑫安胜通建设有限公司网站网站实时显示
  • 个人cms网站网盘做电子书下载网站
  • 自己的网站怎么创建网页设计模板html代码音乐
  • 装饰网站设计模板下载昆明云南微网站制作哪家好
  • 一起做网店网站打不开阿里巴巴上做网站
  • 做网站背景音乐小程序推广app
  • 佛山市网站建设哪家好logo123设计网
  • 系统学做网站做外贸网站的都有哪些类型的公司
  • 大庆网站制作传奇世界网页版在线玩
  • 公司网站建设注意点网络促销
  • 网站打开的速度特别慢的原因制作网站页面怎么做
  • 博客网站怎么做cpa网站建设 教学视频教程
  • 昭通市住房和城乡建设局网站做自己的免费网站
  • 做网站课程企业信息公开查询
  • 网站公司推荐青海网站开发建设
  • 怎么才能建设免费网站学建筑的女生后悔吗
  • 小米路由做网站服务器搜索引擎营销的实现方法有哪些
  • 做优化的网站建筑工程管理系统平台
  • 黑彩网站怎么做seo软文是什么
  • 建设网站公司哪家性价比高广东装修公司排名前十强
  • 淮安网站建设找谁好宝塔系统搭建wordpress
  • 淘宝客网站怎么做的人少了上海高品质网站建设