当前位置: 首页 > news >正文

我国外贸网站的建设怎样用腾讯云做网站

我国外贸网站的建设,怎样用腾讯云做网站,手机网站优化,静态网站开发课程相关新闻卷积作为神经网络的核心计算之一#xff0c;在CV领域有着诸多突破性进展#xff0c;因而近年来关于卷积神经网络的研究不断。由于卷积的计算十分复杂#xff0c;而且神经网络运行时很大一部分时间都会耗费在计算卷积上#xff0c;因此优化卷积计算就显得尤为重要。 那么如…卷积作为神经网络的核心计算之一在CV领域有着诸多突破性进展因而近年来关于卷积神经网络的研究不断。由于卷积的计算十分复杂而且神经网络运行时很大一部分时间都会耗费在计算卷积上因此优化卷积计算就显得尤为重要。 那么如何在不改变网络主体结构的情况下 提高卷积神经网络的性能 今天我就来和大家分享11种经典优化方法这些方法旨在提升CNN的各项能力比如平移、旋转、scale、多尺度特征提取、感受野、感知空间位置能力等。 核心代码以及论文原文文末领取 1、STN 论文Spatial Transformer Networks 标题空间变换器网络 方法介绍卷积神经网络定义了一个非常强大的模型类但仍受限于以计算和参数高效的方式对输入数据空间不变性的缺乏。在这项工作中作者引入了一个新的可学习模块即空间转换器它明确允许网络内数据的空间操作。这个可微分模块可以插入现有的卷积架构中使神经网络能够主动根据特征映射本身在空间上转换特征映射而不需要任何额外的训练监督或修改优化过程。作者发现使用空间转换器可以使模型学习对平移、缩放、旋转和更泛化变形的不变性在几个基准测试中取得了最先进的性能对一些变换类型也取得了最好的结果。 2、ASPPatrous spatial pyramid pooling 论文DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Conv 标题DeepLab使用扩张卷积的语义图像分割 方法介绍作者利用深度学习来解决语义图像分割任务并做出了三个主要贡献这些贡献在实验中被证明具有实质性的实用价值。首先作者强调了上采样滤波器的卷积或“空洞卷积”作为稠密预测任务中的一种强大工具。空洞卷积允许我们在深度卷积神经网络中明确控制特征响应的计算分辨率。它还允许我们有效扩大滤波器的视野以包含更大的上下文而不增加参数数量或计算量。其次作者提出了空洞空间金字塔池化(ASPP)来稳健地在多尺度上分割对象。ASPP用多个采样率和有效视野的滤波器探测进入的卷积特征层从而在多个尺度上捕获对象和图像上下文。第三作者通过结合DCNN和概率图模型的方法来改进对象边界的定位。DCNN中普遍采用的最大池化和下采样实现了不变性但代价是 LOCALIZATION accuracy。作者通过将最终DCNN层的响应与全连接条件随机场(CRF)相结合来克服这个问题这在定性和定量上都被证明可以改进LOCALIZATION性能。 3、Non-local 论文Non-local Neural Networks 标题非局部神经网络 方法介绍作者将非局部运算作为捕捉长程依赖关系的通用基本模块族提出。受计算机视觉中经典的非局部均值方法的启发非局部运算将一个位置的响应计算为所有位置的特征的加权和。这个基本模块可以插入到许多计算机视觉架构中。在视频分类任务上即使没有任何装饰非局部模型也可以与目前的竞赛获胜者在Kinetics和Charades数据集上匹敌或优于其。在静态图像识别中非局部模型改进了在COCO任务集上的目标检测/分割和姿势估计。 4、SE 论文Squeeze-and-Excitation Networks 标题挤压-激励网络 方法介绍卷积神经网络(CNN)的核心构建块是卷积运算符它通过在每个层内的局部感受野内融合空间和通道方向的信息使网络能够构建信息量大的特征。大量的前期研究已经调查了这种关系的空间组成部分通过增强特征层次结构中的空间编码的质量 seek to strengthen 了CNN的表征能力。在这项工作中作者转而关注通道关系并提出了一个新颖的架构单元称之为“squeeze-and-excitation”(SE)块它通过明确建模通道之间的相互依赖关系自适应地重新校准通道方向的特征响应。作者展示了这些块可以堆叠在一起形成SENet架构可以非常有效地推广到不同的数据集上。我们进一步展示SE块为现有的最先进的CNN带来明显的性能改进只带来很小的额外计算成本。 5、CBAM 论文CBAM: Convolutional Block Attention Module 标题CBAM:卷积块注意力模块 方法介绍作者提出了卷积块注意力模块(CBAM)这是一个简单而有效的前馈卷积神经网络的注意力模块。给定一个中间特征图该模块会顺序地沿着两个独立的维度通道和空间推断注意力图然后将注意力图与输入特征图相乘以实现自适应的特征提炼。因为CBAM是一个轻量级和通用的模块它可以无缝地集成到任何CNN架构中带来可忽略的开销并且可以与基础CNN端到端训练。作者通过在ImageNet-1K、MS-COCO目标检测和VOC-2007目标检测数据集上进行大量实验来验证CBAM。实验显示在各种模型上的分类和检测性能都有持续的改进证明了CBAM的广泛适用性。 6、DCN v1v2Deformable Convolutional 论文V1Deformable Convolutional Networks 标题可变形卷积网络 方法介绍卷积神经网络(CNN)固有地受其构建模块中的固定几何结构所限难以对几何变换进行建模。在本工作中作者引入了两个新的模块来增强CNN的变换建模能力即可变形卷积和可变形RoI汇聚。两者的思想都是在模块中对空间采样位置增加额外的偏移并从目标任务中学习这些偏移无需额外的监督。这些新模块可以很容易地在现有的CNN中替换其普通对等模块并可以通过标准反向传播进行端到端训练构成可变形卷积网络。大量实验验证了该方法的有效性在深度CNN中学习稠密空间变换对复杂的视觉任务如目标检测和语义分割是有效的。 论文V2Deformable ConvNets v2: More Deformable, Better Results 标题可变形卷积网络v2 更可变形效果更佳 方法介绍可变形卷积网络的卓越性能来源于其适应对象几何变化的能力虽然其神经特征的空间支持比常规卷积网络更贴近对象结构但此支持可能仍然扩展到兴趣区域之外导致特征被不相关的图像内容影响。为解决此问题作者提出了可变形卷积网络的重构方案通过增加建模能力和更强的训练来提高其关注相关图像区域的能力。通过在网络中更全面地集成可变形卷积和引入调制机制扩大变形建模范围增强了建模能力。为了有效利用这种丰富的建模能力作者通过提出的特征模仿方案指导网络训练帮助网络学习反映对象关注点和RCNN特征分类能力的特征。 7、CoordConv 论文An intriguing failing of convolutional neural networks and the CoordConv solution 标题卷积神经网络的一个令人 fascination 的失败及CoordConv解决方案 方法介绍对于任何涉及像素或空间表示的问题普遍的直觉都认为卷积神经网络可能是合适的。在这篇论文中作者通过一个看似微不足道的坐标变换问题提供了对这一直觉的令人震惊的反例这个问题仅仅要求学习在(x,y)笛卡尔空间坐标和onehot像素空间坐标之间的映射。虽然卷积网络看起来适合这个任务但我们表明它们会惨败。首先作者在一个玩具问题上展示并仔细分析了这个失败这时一个简单的修复方案变得显而易见。作者称这个解决方案为CoordConv其工作原理是通过使用额外的坐标通道为卷积提供其自己的输入坐标。在保持普通卷积的计算和参数效率的同时CoordConv允许网络学习完全的平移不变性或端任务所需的不同程度的平移依赖性。 CoordConv以完美的泛化能力和比卷积快150倍、参数少10-100倍来解决坐标变换问题。这种明显的对比引出了一个问题这种卷积的无能在多大程度上已经隐秘地潜伏在其他任务内部微妙地从内部削弱了性能对这个问题的完整答案还需要进一步的研究但作者展示了使用CoordConv代替卷积可以改进模型在各种任务上的初步证据。在GAN中使用CoordConv产生的模式坍塌更少因为在高级空间潜在变量和像素之间的变换更容易学习。 8、GhostGhost module 论文GhostNet: More Features from Cheap Operations 标题GhostNet: 通过廉价操作获得更多特征 方法介绍在嵌入式设备上部署卷积神经网络(CNN)是困难的因为内存和计算资源有限。特征图中的冗余是那些成功的CNN的一个重要特点但在神经网络架构设计中很少被研究。本文提出了一种新的Ghost模块来通过廉价的操作生成更多特征图。基于一组内在特征图作者应用一系列廉价的线性变换来生成许多ghost特征图这些特征图可以充分揭示内在特征隐含的信息。所提出的Ghost模块可以作为即插即用的组件来升级现有的卷积神经网络。 9、BlurPool 论文Making Convolutional Networks Shift-Invariant Again 标题使卷积网络再次具有平移不变性 方法介绍现代卷积网络不具有移位不变性因为小的输入位移或转换可能导致输出的剧烈变化。常用的下采样方法如最大池化、步进卷积和平均池化忽略了采样定理。众所周知的信号处理方法是在下采样之前通过低通滤波进行抗混叠。然而将这个模块简单地插入深度网络会降低性能。因此它今天很少被使用。作者展示了当以正确的方式集成时它与现有的架构组件(如最大池化和步进卷积)兼容。作者在ImageNet分类中观察到提高的准确率跨几种常用的架构如ResNet、DenseNet和MobileNet这表明有效的正则化。此外作者观察到更好的泛化能力在稳定性和鲁棒性方面对输入损坏具有鲁棒性。 10、RFBReceptive Field Block 论文Receptive Field Block Net for Accurate and Fast Object Detection 标题对象检测的精确快速感受野块网 方法介绍当前表现顶尖的目标检测器依赖于深度CNN backbone如ResNet-101和Inception它们从强大的特征表达中获益但也承受高计算量的代价。相反一些基于轻量模型的检测器可以实现实时处理但其准确率通常受到批评。本文探索一种替代方法通过使用手工设计的机制增强轻量级特征来构建快速且准确的检测器。受人类视觉系统中感受野(RF)结构的启发作者提出了一种新的RF块(RFB)模块它考虑RF大小与离心率之间的关系以增强特征的可区分性和稳定性。作者进一步将RFB组装到SSD的顶部构建RFB Net检测器。 11、ASFFAdaptively Spatial Feature Fusion 论文Adaptively Spatial Feature Fusion Learning Spatial Fusion for Single-Shot Object Detection 标题适应性空间特征融合学习用于单次目标检测的空间融合 方法介绍针对单次检测中的尺度变化问题金字塔特征表示是常见的解决方案。但是基于特征金字塔的单次检测器存在不同尺度特征不一致的问题。本文提出了一种新颖的数据驱动的金字塔特征融合策略称为自适应空间特征融合(ASFF)。它可以学习空间过滤冲突信息的方式来抑制不一致性从而提高特征的尺度不变性并几乎不增加推理开销。结合ASFF策略和YOLOv3坚实的基线作者在MS COCO数据集上达到了最佳的速度和准确率权衡在60 FPS下达到38.1% AP45 FPS下达到42.4% AP29 FPS下达到43.9% AP。 关注下方《学姐带你玩AI》 回复“CNN11”获取全部论文代码合集 码字不易欢迎大家点赞评论收藏
http://www.huolong8.cn/news/43255/

相关文章:

  • 国家建设执业注册中心网站如皋网站定制
  • 类似情侣空间的网站开发wordpress迁移数据库
  • 兰州网站建设q.479185700棒做淘宝客为什么要做网站
  • 网站制作主题思路手机网站 排版
  • lol小米和谁做的视频网站全能网站建设
  • 自定义网站图标一个企业可以做多个网站吗
  • 比较好的做网站的公司可视化app开发工具安卓版
  • 网站建设正规代理商wordpress识别环境的文件
  • 郑州最牛的网站开发公司网站域名可以改么
  • 外贸网站建设昆明西安 房产网站建设
  • 专门做男士用品的网站石家庄个人建网站
  • pinterest设计网站安全的响应式网站建设
  • 桓台网站建设公司网站meta模板
  • 大朗网站建设培训做网站的顶部图片
  • 网站建设维护预算锦州seo推广
  • 常州制作网站软件做商城网站公司吗
  • wordpress中的全站链接怎么改简道云crm
  • 六安seo曝光行者seo珠海seo快速排名
  • 怎么做自己公司的网站微信公众号采集插件wordpress
  • 四川省建设工程招投标网站没钱能注册公司吗
  • 有哪些是外国人做的网站网站建设公司怎么盈利
  • 做网站要租服务器浙江网络安全学院
  • 石碣网站仿做网站制作平台有哪些
  • 百度网站建设目标东莞网站推广营销网站设计
  • 中国万网网站建设过程建e网全景图合成教程
  • 自助建网站哪个便宜产品线上营销有哪些方式
  • 网站用户需求报告免费发布广告信息平台
  • 湖南城市建设网站亚马逊雨林视频
  • 网站建设支付安全网站制作的流程有哪些
  • 郑州住房和城乡建设局网站游戏搬砖工作室加盟平台